TR-Dizin İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/396
Browse
Browsing TR-Dizin İndeksli Yayınlar Koleksiyonu by WoS Q "Q3"
Now showing 1 - 17 of 17
- Results Per Page
- Sort Options
Article 3D Sampling of K-Space With Non-Cartesian Trajectories in MR Imaging(Gazi Univ, Fac Engineering Architecture, 2025) Dundar, Mehmet Sait; Gumus, Kazim Z.; Yilmaz, Bulent; 01. Abdullah Gül UniversityThis study presents an innovative approach to 3D k-space sampling in MR imaging using non-Cartesian concentric shell trajectories. The method involves 32 concentric shells of varying radii, allowing for rapid data acquisition through undersampling techniques. Simulations using IDEA software demonstrate that this approach can fill the k-space in less than one second, a significant time reduction compared to traditional FLASH sequences that can take 3-4 minutes. The concentric shell model enhances imaging efficiency by minimizing artifacts and ensuring uniform k-space filling, leading to higher resolution and faster scans. This technique shows promise for clinical applications, particularly in dynamic imaging scenarios such as acute stroke and pediatric radiology, where speed and precision are critical. As illustrated in Figure A, the concentric shell trajectories enable uniform k-space filling, significantly reducing scan times and improving image quality. These results are based on the simulations conducted with IDEA software.Article Citation - WoS: 4Citation - Scopus: 4All-Polymer Ultrasonic Transducer Design for an Intravascular Ultrasonography Application(Tubitak Scientific & Technological Research Council Turkey, 2019) Hah, Dooyoung; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiIntravascular ultrasonography (IVUS), a medical imaging modality, is used to obtain cross-sectional views of blood vessels from inside. In IVUS, transducers are brought to the proximity of the imaging targets so that high-resolution images can be obtained at high frequency without much concern of signal attenuation. To eliminate mechanical rotation rendered in conventional IVUS, it is proposed to manufacture a transducer array on a flexible substrate and wrap it around a cylindrical frame. The transducer of consideration is a capacitive micromachined ultrasonic transducer (CMUT). The whole device needs to be made out of polymers to be able to endure a high degree of bending (radius: 1 mm) Bending of the devices leads to considerable changes in the device characteristics, including resonant frequency and pull-in voltage due to geometrical dimension changes and stress induced. The main purpose of this work is to understand the effect of bending on the device characteristics by means of finite element analysis. Another objective of the work is to understand the relationships between such an effect and the device geometries. It is learned that the bending-induced stress depends strongly on anchor width, membrane thickness, and substrate thickness. It is also learned that resonant frequency and pull-in voltage become lower in most cases because of using a flexible substrate in comparison to those of the device on a rigid substrate. Bending-induced stress increases the spring constant and hence increases resonant frequency and pull-in voltage, although this effect is relatively weaker. For most of the device geometries, pull-in voltage is too high for the polymer material to endure. This is the main drawback of the all-polymer CMUT. In order to meet the design goal of 20 MHz resonant frequency, the membrane radius has to be smaller than 7.7 mu m for a thickness of 3 mu m.Article Citation - WoS: 2Citation - Scopus: 2Analysis of Optical Gyroscopes With Vertically Stacked Ring Resonators(Tubitak Scientific & Technological Research Council Turkey, 2021) Hah, Dooyoung; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiWithout any moving part, optical gyroscopes exhibit superior reliability and accuracy in comparison to mechanical sensors. Microring-resonator-based optical gyroscopes emerged as alternatives for bulky conventional Sagnac interferometer sensors, especially attractive for applications with limited footprints. Previously, it has been reported that planar incorporation of multiple resonators does not bring about improvement in sensitivity for a given area because the increase in Sagnac phase accumulation does not outrun the increase of area. Therefore, it was naturally suggested to consider vertical stacking of ring resonators because then, the resonators can share the same footprint. In this work, sensitivity performances of such configurations with vertically stacked microring resonators are analyzed and compared to that of a basic (single-resonator) configuration. Through comprehensive study, it is learned that the sensitivity performance of the devices with vertically-stacked resonators (either with a single bus waveguide or with two bus waveguides) does not exceed that of the basic sensor device (single resonator with one bus waveguide), i.e. the basic structure is yet to be remained as the most efficient configuration.Article Citation - WoS: 1Citation - Scopus: 2Complementary Medicines Used in Ulcerative Colitis and Unintended Interactions With Cytochrome P450-Dependent Drug-Metabolizing Enzymes(Tubitak Scientific & Technological Research Council Turkey, 2022) Sen, Alaattin; 01. Abdullah Gül UniversityUlcerative colitis (UC) is an idiopathic, chronic inflammatory disease with multiple genetic and a variety of environmental risk factors. Although current drugs significantly aid in controlling the disease, many people have led to the application of complementary therapies due to the common belief that they are natural and safe, as well as due to the consideration of the side effect of current drugs. Curcumin, cannabinoids, wheatgrass, Boswellia, wormwood and Aloe vera are among the most commonly used complementary medicines in UC. However, these treatments may have adverse and toxic effects due to unintended interactions with drugs or drug-metabolizing enzymes such as cytochrome P450s; thus, being ignorant of these interactions might cause deleterious effects with severe consequences. In addition, the lack of complete and controlled long-term studies with the use of these complementary medicines regarding drug metabolism pose additional risk and unsafety. Thus, this review aims to give an overview of the potential interactions of drug-metabolizing enzymes with the complementary botanical medicines used in UC, drawing attention to possible adverse effects.Article Enlightening the Molecular Mechanisms of Type 2 Diabetes With a Novel Pathway Clustering and Pathway Subnetwork Approach(Tubitak Scientific & Technological Research Council Turkey, 2022) Bakir-Gungor, Burcu; Yazici, Miray Unlu; Goy, Gokhan; Temiz, Mustafa; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik Fakültesi; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikType 2 diabetes mellitus (T2D) constitutes 90% of the diabetes cases, and it is a complex multifactorial disease. In the last decade, genome-wide association studies (GWASs) for T2D successfully pinpointed the genetic variants (typically single nucleotide polymorphisms, SNPs) that associate with disease risk. In order to diminish the burden of multiple testing in GWAS, researchers attempted to evaluate the collective effects of interesting variants. In this regard, pathway-based analyses of GWAS became popular to discover novel multigenic functional associations. Still, to reveal the unaccounted 85 to 90% of T2D variation, which lies hidden in GWAS datasets, new post-GWAS strategies need to be developed. In this respect, here we reanalyze three metaanalysis data of GWAS in T2D, using the methodology that we have developed to identify disease-associated pathways by combining nominally significant evidence of genetic association with the known biochemical pathways, protein-protein interaction (PPI) networks, and the functional information of selected SNPs. In this research effort, to enlighten the molecular mechanisms underlying T2D development and progress, we integrated different in silico approaches that proceed in top-down manner and bottom-up manner, and presented a comprehensive analysis at protein subnetwork, pathway, and pathway subnetwork levels. Using the mutual information based on the shared genes, the identified protein subnetworks and the affected pathways of each dataset were compared. While most of the identified pathways recapitulate the pathophysiology of T2D, our results show that incorporating SNP functional properties, PPI networks into GWAS can dissect leading molecular pathways, and it could offer improvement over traditional enrichment strategies.Article Citation - WoS: 8Citation - Scopus: 10Lung Cancer Subtype Differentiation From Positron Emission Tomography Images(Tubitak Scientific & Technological Research Council Turkey, 2020) Ayyildiz, Oguzhan; Aydin, Zafer; Yilmaz, Bulent; Karacavus, Seyhan; Senkaya, Kubra; Icer, Semra; Kaya, Eser; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiLung cancer is one of the deadly cancer types, and almost 85% of lung cancers are nonsmall cell lung cancer (NSCLC). In the present study we investigated classification and feature selection methods for the differentiation of two subtypes of NSCLC, namely adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). The major advances in understanding the effects of therapy agents suggest that future targeted therapies will be increasingly subtype specific. We obtained positron emission tomography (PET) images of 93 patients with NSCLC, 39 of which had ADC while the rest had SqCC. Random walk segmentation was applied to delineate three-dimensional tumor volume, and 39 texture features were extracted to grade the tumor subtypes. We examined 11 classifiers with two different feature selection methods and the effect of normalization on accuracy. The classifiers we used were the k-nearest-neighbor, logistic regression, support vector machine, Bayesian network, decision tree, radial basis function network, random forest, AdaBoostM1, and three stacking methods. To evaluate the prediction accuracy we performed a leave-one-out cross-validation experiment on the dataset. We also considered optimizing certain hyperparameters of these models by performing 10-fold cross-validation separately on each training set. We found that the stacking ensemble classifier, which combines a decision tree, AdaBoostM1, and logistic regression methods by a metalearner, was the most accurate method for detecting subtypes of NSCLC, and normalization of feature sets improved the accuracy of the classification method.Article Citation - WoS: 1Citation - Scopus: 2Metacognitive Monitoring and Mathematical Abilities: Cognitive Diagnostic Model and Signal Detection Theory Approach(Turkish Education Assoc, 2021) Basokcu, Oguz Tahsin; Guzel, Mehmet Akif; 01. Abdullah Gül University; 06. İnsan ve Toplum Bilimleri Fakültesi; 06.02. PsikolojiBesides various in-class assessments, there exist some standardized assessment tools that are administered in several countries, such as PISA (Programme for International Student Assessment) and TIMMS (Trends in International Mathematics and Science Study). The questions' contents, type of responding, grading, and the analyses in these large-scale tests have been diversified in years. In this study, it was aimed to identify the abilities that are measured at PISA mathematics test in a single testing procedure and by utilizing the methods of analyses of Cognitive Diagnostic Model (CDM) as well as Signal Detection Theory (SDT), which have not been used so far in the assessment of these abilities. Therefore, a randomly selected sample of 6th-grade students (N=230) in Izmir was tested with a PISA-equivalent 12-item mathematics test, where the items are graded dichotomously (correct vs. incorrect). CDM estimates were calculated by using the Deterministic Input Noisy Output and Gate (DINA) Model. The participants were asked to report whether they thought they could solve the question correctly, guess even if they thought they could not solve the question, and then, rate their confidence levels on the correctness of their answers in turn so as to allow us to measure their "metacognitive monitoring performance" with the SDT method, which refers to the ability to differentiate correct and incorrect responses. In short, a better metacognitive monitoring performance was obtained by measuring how well once could differentiate their correct and incorrect responses with the observation of they prefer reporting and then giving high confidence levels to the actually correct responses and prefer passing to give an answer yet rate lower confidence levels to the actually incorrect responses given as pure guesses. The results showed that CDM fits well to the assessment of PISA test and those who were better at the ability of "reasoning and developing strategies" in particular among four possible abilities detected with CDM ("representing and communicating", "mathematization", "reasoning and developing strategies", "using symbolic and technical language") had also better metacognitive monitoring performance. The present study, therefore, contributes to the research that investigates what features the ability of better differentiating correct and incorrect responses are actually linked. Based on the results, it is suggested that a better metacognitive monitoring ability is linked to having a better ability of "reasoning and developing strategies" in particular. Additionally, it is suggested that measuring metacognitive monitoring performance at PISA -or even any other possible tests- with the SDT calculation method, that has a relatively straightforward testing procedure, may yield various estimates for the students' abilities measured at the test as well as their related higher-order abilities.Article Citation - WoS: 3Citation - Scopus: 3MicroRNA Prediction Based on 3D Graphical Representation of RNA Secondary Structures(Tubitak Scientific & Technological Research Council Turkey, 2019) Sacar Demirci, Muserref Duygu; 01. Abdullah Gül University; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikMicroRNAs (miRNAs) are posttranscriptional regulators of gene expression. While a miRNA can target hundreds of messenger RNA (mRNAs), an mRNA can be targeted by different miRNAs, not to mention that a single miRNA might have various binding sites in an mRNA sequence. Therefore, it is quite involved to investigate miRNAs experimentally. Thus, machine learning (ML) is frequently used to overcome such challenges. The key parts of a ML analysis largely depend on the quality of input data and the capacity of the features describing the data. Previously, more than 1000 features were suggested for miRNAs. Here, it is shown that using 36 features representing the RNA secondary structure and its dynamic 3D graphical representation provides up to 98% accuracy values. In this study, a new approach for ML-based miRNA prediction is proposed. Thousands of models are generated through classification of known human miRNAs and pseudohairpins with 3 classifiers: decision tree, naive Bayes, and random forest. Although the method is based on human data, the best model was able to correctly assign 96% of nonhuman hairpins from MirGeneDB, suggesting that this approach might be useful for the analysis of miRNAs from other species.Article Modified Self-Adaptive Local Search Algorithm for a Biobjective Permutation Flow Shop Scheduling Problem(Tubitak Scientific & Technological Research Council Turkey, 2019) Alabas Uslu, Cigdem; Dengiz, Berna; Aglan, Canan; Sabuncuoglu, Ihsan; 01. Abdullah Gül UniversityInterest in multiobjective permutation flow shop scheduling (PFSS) has increased in the last decade to ensure effective resource utilization. This study presents a modified self-adaptive local search (MSALS) algorithm for the biobjective permutation flow shop scheduling problem where both makespan and total flow time objectives are minimized. Compared to existing sophisticated heuristic algorithms, MSALS is quite simple to apply to different biobjective PFSS instances without requiring effort or time for parameter tuning. Computational experiments showed that MSALS is either superior to current heuristics for Pareto sets or is incomparable due to other performance indicators of multiobjective problems.Article Citation - Scopus: 4Network Intrusion Detection Based on Machine Learning Strategies: Performance Comparisons on Imbalanced Wired, Wireless, and Software-Defined Networking (SDN) Network Traffics(Turkiye Klinikleri, 2024) Hacilar, Hilal; Aydin, Zafer; Güngör, Vehbi Çağrı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiThe rapid growth of computer networks emphasizes the urgency of addressing security issues. Organizations rely on network intrusion detection systems (NIDSs) to protect sensitive data from unauthorized access and theft. These systems analyze network traffic to detect suspicious activities, such as attempted breaches or cyberattacks. However, existing studies lack a thorough assessment of class imbalances and classification performance for different types of network intrusions: wired, wireless, and software-defined networking (SDN). This research aims to fill this gap by examining these networks’ imbalances, feature selection, and binary classification to enhance intrusion detection system efficiency. Various techniques such as SMOTE, ROS, ADASYN, and SMOTETomek are used to handle imbalanced datasets. Additionally, eXtreme Gradient Boosting (XGBoost) identifies key features, and an autoencoder (AE) assists in feature extraction for the classification task. The study evaluates datasets such as AWID, UNSW, and InSDN, yielding the best results with different numbers of selected features. Bayesian optimization fine-tunes parameters, and diverse machine learning algorithms (SVM, kNN, XGBoost, random forest, ensemble classifiers, and autoencoders) are employed. The optimal results, considering F1-measure, overall accuracy, detection rate, and false alarm rate, have been achieved for the UNSW-NB15, preprocessed AWID, and InSDN datasets, with values of [0.9356, 0.9289, 0.9328, 0.07597], [0.997, 0.9995, 0.9999, 0.0171], and [0.9998, 0.9996, 0.9998, 0.0012], respectively. These findings demonstrate that combining Bayesian optimization with oversampling techniques significantly enhances classification performance across wired, wireless, and SDN networks when compared to previous research conducted on these datasets. © 2024 Elsevier B.V., All rights reserved.Article Optimizing Parameters for Efficient Computation With Fully Homomorphic Encryption Schemes(Tubitak Scientific & Technological Research Council Turkey, 2025) Karaagac, Cavidan Yakupoglu; Rohloff, Kurt; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiIn this study, we aim to provide a parameter selection approach for the BFVrns scheme, one of the prominent fully homomorphic encryption (FHE) schemes. Selecting parameters for lattice-based FHE schemes poses a practical challenge for both experts and nonexperts. To solve this problem, we introduce a hybrid approach that combines theoretical approach with experimental analysis. First, we employ regression analysis to examine the impact of parameters on both performance and security. The varying behavior of FHE parameters in terms of performance, security, and ciphertext expansion factor (CEF) makes parameter selection more challenging. To address this issue, we employ a multi-objective optimization algorithm to determine the optimal parameter set for performance, CEF, and security simultaneously. As a result of this optimization, we obtain an improved parameter set that enhances performance at a given security level while ensuring correctness and resistance to lattice-based attacks, maintaining at least 128-bit security. Our results achieve an average similar to 5x reduction in CEF and generally better performance compared to the parameter sets in a previous BFVrns study. Our approach serves as a semi-automated parameter selection method for the PALISADE homomorphic encryption library, a widely recognized FHE library. This study sets a precedent for other FHE libraries.Article Citation - WoS: 1Citation - Scopus: 1Prediction of Preference and Effect of Music on Preference: A Preliminary Study on Electroencephalography from Young Women(Tubitak Scientific & Technological Research Council Turkey, 2019) Yilmaz, Bulent; Gazeloglu, Cengiz; Altindis, Fatih; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiNeuromarketing is the application of the neuroscientific approaches to analyze and understand economically relevant behavior. In this study, the effect of loud and rhythmic music in a sample neuromarketing setup is investigated. The second aim was to develop an approach in the prediction of preference using only brain signals. In this work, 19-channel EEG signals were recorded and two experimental paradigms were implemented: no music/silence and rhythmic, loud music using a headphone, while viewing women shoes. For each 10-sec epoch, normalized power spectral density (PSD) of EEG data for six frequency bands was estimated using the Burg method. The effect of music was investigated by comparing the mean differences between music and no music groups using independent two-sample t-test. In the preference prediction part sequential forward selection, k-nearest neighbors (k-NN) and the support vector machines (SVM), and 5-fold cross-validation approaches were used. It is found that music did not affect like decision in any of the power bands, on the contrary, music affected dislike decisions for all bands with no exceptions. Furthermore, the accuracies obtained in preference prediction study were between 77.5 and 82.5% for k-NN and SVM techniques. The results of the study showed the feasibility of using EEG signals in the investigation of the music effect on purchasing behavior and the prediction of preference of an individual.Article Citation - WoS: 1Citation - Scopus: 1RPI-1 (Human DCDC2) Displays Functional Redundancy With Nephronophthisis 4 in Regulating Cilia Biogenesis in C. Elegans(Tubitak Scientific & Technological Research Council Turkey, 2023) Kaplan, Oktay I.; 01. Abdullah Gül University; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikProjecting from most cell surfaces, cilia serve as important hubs for sensory and signaling processes and have been linked to a variety of human disorders, including Bardet-Biedl Syndrome (BBS), Meckel-Gruber Syndrome (MKS), Nephronophthisis (NPHP), and Joubert Syndrome, and these diseases are collectively known as a ciliopathy. DCDC2 is a ciliopathy protein that localizes to cilia; nevertheless, our understanding of the role of DCDC2 in cilia is still limited. We employed C. elegans to investigate the function of C. elegans RPI-1, a Caenorhabditis elegans ortholog of human DCDC2, in cilia and found that C. elegans RPI-1 localizes to the entire ciliary axoneme, but is not present in the transition zone and basal body. We generated a null mutant of C. elegans rpi-1, and our analysis with a range of fluorescence-based ciliary markers revealed that DCDC2 and nephronophthisis 4 (NPHP-4/NPHP4) display functional redundant roles in regulating cilia length and cilia positions. Taken together, our analysis discovered a novel genetic interaction between two ciliopathy disease genes (RPI-1/DCDC2 and NPHP-4/NPHP4) in C. elegans.Article Citation - WoS: 6Citation - Scopus: 6Sex Effect on the Correlation of Immunoglobulin G Glycosylation With Rheumatoid Arthritis Disease Activity(Tubitak Scientific & Technological Research Council Turkey, 2020) Ercan, Altan; 01. Abdullah Gül UniversityRheumatoid arthritis (RA) is a chronic autoimmune disease which affects females more than males with a presence of autoantibodies. Immunoglobulin G (IgG) produced by adaptive arm has 2 functional domains, Fc and Fab. The Fc domain binds Fc gamma receptors and C1q proteins of the innate arm. Therefore, the IgG Fc domain serves as a bridge between the innate and adaptive arms and is regulated by an evolutionarily conserved N-glycosylation with variable structures. These glycans are classified as agalactosylated G0, monogalactosylated G1, and digalactosylated G2, which are further modified by core-fucosylation (F) and bisecting N-acetylglucosamine (B) moieties such as G0F and G0FB. Interestingly, proinflammatory G0F is shown to be regulated by estrogen in vivo. Here, it is hypothesized that the regulation of G0F by estrogen contributes to sex dichotomy in RA by setting up the level of IgG-dependent inflammation and therefore, RA disease activity (Das28-CRP3). To investigate this hypothesis, IgG glycosylation was characterized in serum samples from active RA patients (n = 232) and healthy controls (n = 232) by serum N-glycan analysis using the high performance liquid chromatography. According to the results, the IgG Fc glycan phenotype originates predominantly from the structure of G0F, and both G0F and G0FB correlate with Das28-CRP3 in females, but not in males. In conclusion, IgG G0F-dependent inflammation differs in males and females, and these differences point to the differential regulation of inflammation by sex hormone estrogen via IgG glycosylation.Article Study of Helical Antenna Endowing Short Wire Length and Compact Structure for High-Frequency Operations and Its Exclusive Manufacturing Process(Tubitak Scientific & Technological Research Council Turkey, 2023) Aslan, Melih; Sik, Kaan; Güzelkara, Izzet; Özdür, Ibrahim Tuna; Kilic, Veli Tayfun; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiIn this paper a study of a helical antenna resonating at high-frequency (HF) band with a very compact structure is reported. The designed antenna's S11 parameter magnitude change with frequency was calculated for different geometrical parameters. For each case, first, only a single parameter was changed. Then for a fair comparison, multiple parameters were changed simultaneously while the total wire length was set to be constant. Also, shifts in resonance frequencies and variations in -10 dB bandwidths were investigated. Our results show that resonance behaviour changes distinctively with the geometrical parameters and it allows shortening of the antenna wire length. For the designed antenna, the resonances shift to lower frequencies and -10 dB bandwidths around the resonances decrease as the winding wire thickness, number of turns, and turn radius increase. Whereas as the turn spacing increases the resonances shift to higher frequencies and -10 dB bandwidths widen, although the total wire length of the antenna increases. To verify the simulation results, the designed antenna was fabricated with an exclusive manufacturing process and characterized. The measurement results are in good agreement with the simulation results. It demonstrates the feasibility of the proposed manufacturing technique, which is new in the literature and enables accurate and rigid antenna fabrication with simple and low-cost steps.Article Theoretical Investigation of Steric Effects on the S1 Potential Energy Surface of O-Carborane Derivatives(Tubitak Scientific & Technological Research Council Turkey, 2023) Alkan, Fahri; 01. Abdullah Gül UniversityTDDFT scan calculations were performed for s-carborane-anthracene derivatives (o-CB-X-Ant where X=-H,-CH3,-C2H5 and tert-butyl or-tBu) in order to understand the interplay between the steric effects, S1 potential energy surface (PES) and photophysical properties. The results show that all systems exhibit three local minima on the S1 PES, which correspond to the emissive LE and TICT state, along with the nonemissive CT state respectively. In the case of the unsubstituted system (o-CB-H-Ant), and-CH3 and-C2H5 substituted cases, S1 PES is predicted to be quite flat for certain conformations indicating that it is possible for these systems to reach the nonemissive CT state without a large energy penalty. In comparison, conformational pathways for the nonemissive CT state are predicted to be energetically unfavorable for o-CB-tBu-Ant as a result of both steric and electronic effects. These results provide a mechanism for the enhanced emission of cr-CB-fluorophore molecules with bulky ligands.Article Thermal Stresses in SOFC Stacks: The Role of Mismatch Among Thermal Conductivity of Adjacent Components(Tubitak Scientific & Technological Research Council Turkey, 2021) Aydin, Ozgur; Matsumoto, Go; Shiratori, Yusuke; 01. Abdullah Gül UniversityGenerating power from renewable biogas in solid oxide fuel cells (SOFCs) is an environment-friendly, efficient, and promising energy conversion process. Biogas can be used in SOFCs via a reforming process for which dry reforming is more suitable as the reforming agent exists in the biogas mixture. Biogas can be directly reformed to H-2 -rich fuel stream in the anode chamber of a SOFC by the heat released during power generation. Exploiting the heat and water produced in the SOFC for internal reforming of biogas makes the energy conversion process very efficient; however, various challenges are reported. Thus, indirect internal reforming is opted for which a separate reforming domain is required. In an indirect internal reformer operating at usual conditions, dry reforming rate is quite high in the inlet and it decreases steeply toward the fuel outlet. Great temperature gradients develop over the reformer, since the dry reforming reaction is strongly endothermic. The abruptly varying rate of the reforming reaction affects the temperature fields in the adjacent components of SOFC and hence intolerable thermal stresses emerge on the SOFC components. In our preceding study, we graded the reforming domain, homogenized the temperature profile over the reforming domain, and executed performance and durability experiments. However, most of the experiments failed due to fracturing SOFC components hinting at existence of thermal stresses. In that study, we focused on minimizing the temperature gradients within the reforming domain; namely, we neglected the other processes. To eliminate the thermal stresses, we modeled the entire module of SOFC equipped with a reformer featuring a graded reforming domain. We found that the mismatch between the thermal conductivities of the adjacent module components is the major reason for the thermal stresses. When the mismatch is eliminated, thermal stresses disappear even if the reforming domain is not graded.
