İnşaat Mühendisliği Bölümü Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/205

Browse

Recent Submissions

Now showing 1 - 20 of 156
  • Article
    Stress and damage distribution analysis of steel reinforced geopolymer concrete beams: Finite element method and experimental comparison under varying design parameters
    (ELSEVIER, 2025) Ozbayrak, Ahmet; Kucukgoncu, Hurmet; Aslanbay, Huseyin Hilmi; Aslanbay, Yuksel Gul; 0000-0001-5148-8753; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Kucukgoncu, Hurmet
    Geopolymer concrete (GPC) is a sustainable and eco-friendly alternative to ordinary Portland cement-based concrete (OPC). However, its application in reinforced concrete structures remains limited due to insufficient research on structural performance. This study examines the effects of tensile reinforcement ratio, sodium silicate/sodium hydroxide ratio, and curing method on GPCreinforced concrete (GPC-RC) beams. Experimental and numerical bending tests were performed on GPC and OPC beams with similar tensile reinforcement and strength properties. Load- displacement and moment-curvature relationships were obtained and compared, while stress and stiffness behaviors were analyzed numerically. The results show that curing methods and reinforcement ratios significantly influence GPC beam behavior. In GPC samples, numerical and experimental displacement and load values differed by approximately 10 % at both yield and ultimate points. For OPC, these differences were 35 % and 14 % at the yield point and 17 % and 25 % at the ultimate point. GPC exhibited distinct stress and damage distribution characteristics compared to OPC. The finite element models were statistically validated, confirming their consistency with experimental results. These findings contribute to the understanding of GPC's structural behavior and provide guidance for its design and optimization in reinforced concrete applications.
  • Article
    Ground failures and foundation performances in Adıyaman-Gölbaşı following the 6 February 2023 Kahramanmaraş-Türkiye Earthquake Sequence
    (SAGE PUBLICATIONS INC, 2025) Cetin, Kemal Onder; Moug, Diane; Soylemez, Berkan; Ayhan, Bilal Umut; Zarzour, Moutasem; Suhaily, Ahmed Al; Akil, Bulent; Unutmaz, Berna; Firat, Seyhan; Tekin, Erhan; Cakir, Elife; Frost, David; Macedo, Jorge; Bray, Jonathan; Moss, Robb; Bassal, Patrick; Gurbuz, Ayhan; Isik, Nihat Sinan; Akin, Muge; Sahin, Arda; Duman, Emre; 0000-0001-8873-5287; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Akin, Muge
    The 6 February 2023 Kahramanmara & scedil;-T & uuml;rkiye earthquake sequence (M7.8 and M7.6) presents an exceptional opportunity to investigate both the effects of local soil conditions on damage patterns under strong shaking conditions and the performance of building foundations in areas that experienced ground failure. The significant ground failure and structural damage in Ad & imath;yaman-G & ouml;lba & scedil;& imath; triggered an intensive series of detailed reconnaissance and field surveys. This article aims to present the resulting database of observations on ground failures, building, and foundation performances. The field reconnaissance of ground failures and their effects on building performances involved aerial and walk-down surveys, including high-quality photographs taken across the town. In addition, data on building damage statistics compiled by the Ministry of Environment, Urbanization, and Climate Change were accessed and analyzed. The subsurface characteristics of the town were characterized using available data from pre-earthquake site investigation campaigns employed for town planning purposes. It is concluded that the ground failures in the town primarily resulted from soil liquefaction and cyclic softening. Most of the poor building and foundation performances and ground failures were documented in the northern part of Atat & uuml;rk Boulevard, closer to the lake of G & ouml;lba & scedil;& imath;, where soil site characteristics were unfavorable. This revealed once again the significant effects of local soil site conditions, particularly soil liquefaction, on the intensified ground failures, foundation, and structural damage levels.
  • Article
    Machine Learning-Aided Inverse Design and Discovery of Novel Polymeric Materials for Membrane Separation
    (ACS Publications, 2024) Dangayach, Raghav; Jeong, Nohyeong; Demirel, Elif; Uzal, Nigmet; Fung, Victor; Chen, Yongsheng; 0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, Nigmet
    Polymeric membranes have been widely used for liquid and gas separation in various industrial applications over the past few decades because of their exceptional versatility and high tunability. Traditional trial-and-error methods for material synthesis are inadequate to meet the growing demands for high-performance membranes. Machine learning (ML) has demonstrated huge potential to accelerate design and discovery of membrane materials. In this review, we cover strengths and weaknesses of the traditional methods, followed by a discussion on the emergence of ML for developing advanced polymeric membranes. We describe methodologies for data collection, data preparation, the commonly used ML models, and the explainable artificial intelligence (XAI) tools implemented in membrane research. Furthermore, we explain the experimental and computational validation steps to verify the results provided by these ML models. Subsequently, we showcase successful case studies of polymeric membranes and emphasize inverse design methodology within a ML-driven structured framework. Finally, we conclude by highlighting the recent progress, challenges, and future research directions to advance ML research for next generation polymeric membranes. With this review, we aim to provide a comprehensive guideline to researchers, scientists, and engineers assisting in the implementation of ML to membrane research and to accelerate the membrane design and material discovery process.
  • Article
    Lifli betonlar için elastisite modülü tahmini
    (PAMUKKALE UNIVERSITY, 2020) Yağmur, Eren; 0000-0001-5938-0501; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Yağmur, Eren
    Bu çalışmada, farklı ayrık lif tiplerinin betonun elastisite modülü üzerindeki etkileri araştırılmıştır. Bu amaçla 260 adet silindirik basınç deney numunesi derlenmiştir. Dikkate alınan lif tipleri çelik, PVA, polipropilen, polyolefin, bazalt ve olefindir. Çalışma sonuçları tüm lif tipleri için kaba agrega miktarının ince agrega miktarına oranının 1.5’i aşması durumunda beton basınç dayanımının azaldığını göstermiştir. Çelik lifli karışımların lif narinlik oranının 60’dan küçük ve eşit olduğu durumlarda elastisite modülü artış gösterirken 60’dan büyük değerler için elastisite modülünün azaldığı görülmüştür. Dikkate alınan tüm lif tipleri için geçerli olan bir elastisite modülü denklemi önerilmiştir. Önerilen denklem deney sonuçları ile ve literatürde yer alan diğer formüllerle karşılaştırılmış ve farklı durumlar için denklemlerin geçerlilikleri sorgulanmıştır.
  • Article
    Determining datum temperature and apparent activation energy: an approach for mineral admixtures incorporated cementitious systems
    (Tulpar Academic Publishing, 2024) Atasever, Muhammet; Tokyay, Mustafa; 0000-0001-7375-8152; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atasever, Muhammet
    The maturity method is used to predict the strength of concrete by monitoring its temperature history. Accuracy of maturity method relies on the dependable determination of the datum temperature and the apparent activation energy. The current study introduces a new approach, complementing those in ASTM C1074-11, for determining the datum temperature and apparent activation energy. The experimental study involved using two different mineral additives to portland cement at 6%, 20%, and 35% replacement amounts. The mortars were then cured at temperatures of 5, 20, and 40 °C, and their strengths were determined. Subsequently, the datum temperatures and apparent activation energies for these mixtures were calculated using both the proposed approach and the alternatives from ASTM C1074-11. Strength estimations were conducted in conjunction with commonly used maturity functions. The results indicate that the proposed approach determines the datum temperature and apparent activation energy reliably for mineral admixture-incorporated mortars. Furthermore, the predicted strengths, derived from the datum temperature and apparent activation energy calculated through the proposed approach, show a closer alignment with the experimental results when applying the Nurse-Saul and HansenPedersen equations, as opposed to the Rastrup and Weaver-Sadgrove models
  • Article
    Landsat 8 Görüntüleri ile Cheney Rezervuarında Bulanıklık Tahmini: Regresyon, MARS ve TreeNet Yöntemlerinin Karşılaştırılması
    (Halil AKINCI, 2024) Dilmen, Omer; Nacar, Sinan; Tunç Görmüş, Esra; Bayram, Adem; 0000-0002-7494-8625; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dilmen, Omer
    Rezervuarlardaki su kalitesi takibi, suyun kullanım amacına uygunluğu ve su canlılarının korunması için önemlidir ve su kalitesinin belirlenmesinde en yaygın kullanılan değişkenlerden biri de bulanıklıktır. Bu değişkenin takibinde kullanılan geleneksel yöntemlerin maliyetli ve zaman alıcı olması, su kalitesi takibi için daha ekonomik ve hızlı bir alternatif olan uzaktan algılama çalışmalarını ön plana çıkarmıştır. Bu çalışmada, Landsat 8 Operational Land Imager (OLI) görüntüleri kullanılarak Cheney Rezervuarında (Kansas, ABD) bulanıklık değişkenini tahmin edebilecek bir model kurulması amaçlanmıştır. Bu amaçla 99 Landsat 8 OLI görüntüsü, 2014-2022 yılları arasında rezervuarda takibi yapılan bulanıklık verileriyle aralarındaki zaman farkı 20 dakikadan az olacak şekilde eşleştirilmiştir. Tahmin modellerinin kurulmasında regresyon analizi, çok değişkenli uyarlanabilir regresyon eğrileri (MARS) ve TreeNet gradyan arttırma makinesi (TreeNet) yöntemleri kullanılmıştır. Kurulan modellerin performansları, ortalama karesel hata, ortalama karesel hatanın karekökü, ortalama mutlak hata ve Nash-Sutcliffe (NS) verimlilik katsayısı performans istatistikleri ile kıyaslanmıştır. MARS ve TreeNet yöntemlerinin tahmin gücünün test veri seti için birbirine eşit olduğu görülmüştür (NS = 0.61). En önemli parametrenin MARS yöntemi kullanılarak oluşturulan modelde B4/B1 (kırmızı/kıyı aerosol), TreeNet yöntemiyle oluşturulan modelde ise B4/B2 (kırmızı/mavi) olduğu belirlenmiştir.
  • Article
    Efficiency of L-DOPA+TiO2 modified RO membrane on salinity gradient energy generation by pressure retarded osmosis
    (Pamukkale Üniversitesi, 2024) Ateş, Nuray; Saki, Seda; Gokcek, Murat; Uzal, Niğmet; 0000-0001-8923-2323; 0000-0002-0912-3459; AGÜ, Fen Bilimleri Enstitüsü, Malzeme Bilimi ve Makine Mühendisliği Ana Bilim Dalı; SAKİ, Seda; Uzal, Niğmet
    Harvesting energy from the salinity gradient of seawater and river water using pressure retarded osmosis (PRO) has been a major research topic of recent years. However, there is a need for efficient PRO membranes that can generate high power density and are pressure resistant, as the performance of current membranes on the market is poor. In this study, specific energy potential of PRO process using LDOPA+TiO2 modified BW30-LE membrane was evaluated on synthetic and real water samples. Polyamide BW30-LE RO membrane was modified by L-DOPA, L-DOPA+0.5 wt% TiO2 and L-DOPA+1 wt% TiO2. The effect of hydraulic pressure and temperature on generation of power density were evaluated for 5, 10, and 15 bar pressures, as well as 10 °C, 20 °C, and 30 °C degrees. The incorporation of TiO2 nanoparticles with L-DOPA increased the water flux by increasing the surface hydrophilicity and roughness of the membrane surface. The maximum specific power was observed as 1.6 W/m2 for L-DOPA+1 wt% TiO2 modified BW30-LE membrane at 15 bar pressure. Besides, Mediterranean and Aegean, Black Sea water samples were used as draw solution and Seyhan, Ceyhan, Buyuk Menderes, Gediz, Yesilirmak, and Kizilirmak Rivers were used as feed solution. The highest osmotic power density was obtained by using L-DOPA+1 wt% TiO2 modified BW30-LE membrane with Ceyhan River as feed and Mediterranean Sea water as draw solution, which have the highest differences in salinity. In the mixture of Mediterranean and Ceyhan River, the highest power density was obtained at 10 bar pressure at 30 ± 5°C with 0.70 W/m2 .
  • Article
    Effect of urbanization on surface runoff and performance of green roofs and permeable pavement for mitigating urban floods
    (SPRINGER NATURE Link, 2024) Öztürk, Şevki; Yılmaz, Kutay; Dincer, Ali Ersin; Kalpakcı, Volkan; 0000-0002-4662-894X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dincer, Ali Ersin
    Floods are increasingly becoming a significant concern due to climate change, global warming, and excessive urbanization. The Intergovernmental Panel on Climate Change (IPCC) has projected that global warming will continue to contribute to more frequent and severe floods and hydrological extremes. In response to these challenges, nature-based solutions (NBSs) have gained recognition as effective approaches to mitigate the adverse impacts of floods by focusing on ecosystem conservation, restoration, and sustainable utilization of natural resources. This study examines a flood that occurred in the Erkilet District of Kayseri, Türkiye on September 22, 2022, as a result of intense rainfall. It involves a thorough on-site investigation to assess the hydraulic, hydrologic, and geotechnical attributes of the study area. The findings from the field study indicate that the primary cause of the flood is attributed to excessive urbanization. To further analyze the impact of urbanization, a hydraulic model is developed considering both the physical and topographical conditions of the study area for both the year 2006 and 2022. The simulation results reveal that the extent of inundation area and water depth has increased significantly due to the excessive urbanization that occurred within a 16-year period. Additionally, the effectiveness of green roofs and permeable pavements as NBSs to mitigate urban flooding is explored. The implementation of green roofs and permeable pavements shows promising results, reducing the adverse effects of urban floods by 3% to 8%, depending on their specific locations and configurations. However, the results suggest that NBSs alone cannot fully prevent floods so they should complement gray infrastructure. The novelty of the study lies in its ability to demonstrate the impact of urbanization and the effectiveness of nature-based solutions in mitigating flood extent based.
  • Article
    Effects of clay type and component fineness on the hydration and properties of limestone calcined clay cement
    (SPRINGER NATURE Link, 2024) Atasever, Muhammet; Erdoğan, Sinan Turhan; 0000-0001-7375-8152; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atasever, Muhammet
    Limestone calcined clay cement (LC3) is emerging as an alternative to Portland cement, offering economic advantages, reduced CO2 emissions, and mechanical properties on par with Portland cement. Central to the effective utilization of LC3 is understanding how the fineness of its components affects its performance. The current study investigates limestone calcined clay cement mixtures composed of kaolinite, illite, and montmorillonite calcined clays and limestone at two levels of fineness. Strengths of mortar cubes were tested at 1, 3, 7, and 28 d and statistical analysis was performed with a 95% confidence level. Additionally, LC3 pastes were analyzed using x-ray diffraction, mercury intrusion porosimetry, scanning electron microscopy, and isothermal calorimetry. The fineness of the calcined clay along with the fineness of limestone is found to be statistically significant for 28-d strength in LC3 mortars made with kaolinitic and montmorillonite calcined clays. All hydrated blends had a hemicarboaluminate phase, whose intensity was related to the fineness of the calcined clay, and the monocarboaluminate phase formation was found to be dependent on both the fineness and type of calcined clay. Porosimetry revealed that LC3 pastes with illite clay have larger threshold pore diameters than those with kaolinite clay. LC3 pastes containing kaolinite have denser microstructures due to C–S–H and hemicarboaluminate formation. Pastes produced with coarse calcined clay and coarse limestone led to a broader, weaker heat development peak and lower normalized cumulative heat. LC3 with kaolinitic clay has the highest normalized cumulative heat, while that with montmorillonite calcined clay has the lowest. Graphical abstract: (Figure presented.)
  • Article
    Characterization of Limestone Calcined Clay Cement Made with Calcium Sulfoaluminate Clinker
    (SPRINGER, 2024) Atasever, Muhammet; Erdoğan, Sinan Turhan; 0000-0001-7375-8152; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atasever, Muhammet
    This study concentrated on producing limestone calcined clay calcium sulfoaluminate cement by replacing portland cement in limestone calcined clay cement with calcium sulfoaluminate cement, with the goal of increasing the early strength of limestone calcined clay cement. The mineralogy and microstructures of hydrating pastes were investigated using x-ray diffraction and scanning electron microscopy. Heat evolution was studied using isothermal calorimetry. Strength development and workability were assessed on mortar samples. The 1 day strengths of limestone calcined clay calcium sulfoaluminate cement samples exceeded those of limestone calcined clay cement by ~ 30–80%, though its strength gain slows significantly after 1 day due to the lack of calcium silicates, affecting pH and clay dissolution. Despite this, the strength development of limestone calcined clay calcium sulfoaluminate cement, when adjusted for CO2 emissions, is comparable to limestone calcined clay cement. Additionally, limestone calcined clay calcium sulfoaluminate cement provides a 10–15% higher flow and exhibits a lower heat of hydration beyond 12 h, while maintaining a production cost similar to that of limestone calcined clay cement.
  • Article
    A cleaner demolition scheduling methodology considering dust dispersion: A case study for a post-earthquake region
    (ELSEVIER, 2024) Dincer, Ali Ersin; Demir, Abdullah; Dilmen, Omer; 0000-0002-4662-894X; 0000-0002-6392-648X; 0000-0002-7494-8625; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dincer, Ali Ersin; Demir, Abdullah; Dilmen, Omer
    In the present century, pollution is a primary concern for billions, prompting governments to advocate cleaner ways of production. Demolition activity is often an indispensable solution for structures that have completed their economic life. However, there are no regulations for the scheduling of demolition, except those related to the method of demolition and ensuring worker safety. Older buildings incorporate hazardous materials, such as asbestos, silica, and lead. These materials not only carry inherent risks, but high levels of aerosols in the air also adversely affect health. In this study, a demolition scheduling method is proposed, considering the dust dispersion. This research is pioneering, providing a structured demolition schedule to minimize the impact on both humans and the environment. In the methodology, a dispersion model is used to calculate the region exposed to dust and the concentration distribution throughout that area. In addition to the dust effect map, a vulnerability map is created using Analytical Hierarchy Process (AHP), aiding in determining interrelations between vulnerable sites. Thus, the dust effect map is derived by considering both dust exposure and the vulnerability map. The region affected by dust and the concentration of dust vary based on wind characteristics. By knowing the dust effect maps for the site (or all subsites) during specified time periods, a schedule can be defined. As a case study, schedules causing the absolute minimum and optimum dust effect rates are established for Kahramanmaras,, , , T & uuml;rkiye which recently experienced a devastating earthquake. The findings of the case study show that the dust effect on humans and the environment is significantly reduced. Consequently, by adhering to the proposed scheduling plan, human exposure to demolition dust is minimized, resulting in reduced medical expenses even without increasing the cost of the demolition.
  • Article
    Comparative analysis of hybrid geothermal-solar systems and solar PV with battery storage: Site suitability, emissions, and economic performance
    (ELSEVIER, 2024) Fedakar, Halil Ibrahim; Dinçer, Ali Ersin; Demir, Abdullah; 0000-0002-7561-5363; 0000-0002-4662-894X; 0000-0002-6392-648X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Fedakar, Halil Ibrahim; Dinçer, Ali Ersin; Demir, Abdullah
    Renewable energy integration has become a critical focus in the global effort to reduce carbon emissions and diversify energy sources. In regions with distinct geographic features, such as Türkiye, combining different renewable technologies can offer enhanced energy security. This study investigates the site suitability and economic and environmental performance of hybrid geothermal-solar systems and solar PV systems with battery storage across the provinces of Osmaniye, Hatay, and Kilis, of Türkiye. Using the fuzzy-AHP method, site suitability is evaluated, addressing a key gap in comparing these systems' adaptability to varying geographic conditions. This study is the first to directly compare these two renewable energy technologies in terms of site suitability. The findings reveal significant differences in site suitability, with solar PV systems with battery storage demonstrating broader applicability across the region. The suitable sites (20–100 % suitability) cover 1260.82 km² for solar PV systems with battery storage and only 122.18 km² for hybrid geothermal-solar systems. In terms of environmental impact, hybrid geothermal-solar systems exhibit significantly lower carbon emissions, averaging 44.6 kg CO₂/MWh, compared to 123.8 kg CO₂/MWh for solar PV systems with battery storage. Economically, hybrid geothermal-solar systems also outperform with a lower levelized cost of electricity of $0.091 kWh versus $0.254 kWh for solar PV systems. These results highlight the environmental and economic advantages of hybrid geothermal-solar systems, while also emphasizing their limited scalability to regions with geothermal activity. Conversely, solar PV systems, despite their higher emissions and costs, offer greater flexibility and potential for widespread deployment.
  • Article
    Characterizing boron-enhanced one-part alkaline-activated mortars: Mechanical properties, microstructure and environmental impacts
    (ELSEVIER, 2024) Örklemez, Ezgi; İlkentapar, Serhan; Durak, Ugur; Gülçimen, Sedat; Uzal, Niğmet; Uzal, Burak; Karahan, Okan; Atiş, Cengiz Duran; 0000-0002-8967-3484; 0000-0002-3810-7263; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Gülçimen, Sedat; Uzal, Niğmet; Uzal, Burak
    Since alkali activators negatively effect the environmental impact assessment, it is necessary to develop the alternative activators from natural sources with low environmental impact. Therefore, in this study, the usage of boron refined products colemanite, ulexite and boron pentahydrate as activators in slag-based alkali-activated mortar systems was investigated in detail. Flexural and compressive strength tests, isothermal calorimetry measurement, thermogravimetric and differential thermal analysis, inductively coupled plasma mass spectrometry analysis, field emission scanning electron microscopy, and energy dispersive analysis and elemental mapping and X-ray diffraction analysis were carried out on the samples. In addition, sample production was subjected to life cycle analysis (LCA) with a cradle-to-gate approach using two different transportation scenarios. According to the results obtained, it was determined that colemanite, ulexite and boron penta hydrate, when used in optimum proportions, had a positive effect on strength (up to increase 40% compressive strength by 20% ulexite replacement) and could be used as an activator in slag-based alkali-activated systems. The positive results obtained in strength as a result of using boron-refined products are also supported by other test results conducted within the scope of the study. Furthermore, according to the LCA results, it was observed that there was a significant decrease in global warming potential with the substitution of 20% colemanite, ulexite or boron pentahydrate as activators, not only compared to the reference sample but also traditional cementitious systems.
  • Article
    A Fully Coupled Numerical Model for Unbonded Post-tensioned Timber Structures
    (SPRINGER LINK, 2024) Dinçer, Ali Ersin; Demir, Abdullah; 0000-0002-4662-894X; 0000-0002-6392-648X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dinçer, Ali Ersin; Demir, Abdullah
    The paper presents a fully Lagrangian mesh-free solver to simulate the dynamic behavior of post-tensioned timber structures. Weakly Compressible Smoothed Particle Hydrodynamics (SPH) is employed to model both the timber and the tendon. An efficient and simple coupling method between the timber and the tendon is proposed by considering the numerical stability. Besides, the same coupling algorithm is used to model the interaction between column and beam elements. Although the column is treated as rigid in the simulations, the coupling algorithm accounts for the initial compression of the column resulting from post-tensioning. For the verification of the code for solids and material nonlinearity of timber, benchmark problems available in the literature are used. Finally, the solver's capability is demonstrated through dynamic analysis of post-tensioned timber structures. The solutions obtained for all the cases are in good agreement with the experimental and theoretical data, which indicates the applicability and accuracy of the solver.
  • Article
    The impact of Kahramanmaraş (2023) earthquakes: A comparative case study for Adıyaman and Malatya
    (ELSEVIER, 2024) Dinçer, Ali Ersin; Dincer, N. Nergiz; Tekin-Koru, Ayça; Yaşar, Burze; Yılmaz, Zafer; 0000-0002-4662-894X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dinçer, Ali Ersin
    This study examines the effects of two major earthquakes of magnitude 7.7 and 7.6 that struck Kahramanmaraş on February 6th, 2023, followed by a magnitude 6.4 quake in Hatay on February 20th, which caused major damage in 11 Turkish provinces. The study focuses on Adıyaman and Malatya and uses an interdisciplinary approach to analyze the economic and environmental impacts. Primary data sources, including field visits and interviews, reveal clear labor-related challenges in both provinces, characterized by a government-induced labor shortage. In both provinces, physical capital has been severely damaged, particularly affecting small businesses, historic bazaars, and old industrial areas. The impact on businesses varies by size and location, with Adıyaman suffering more severe setbacks than other cities. The shortage of skilled labor related to the earthquake damage affects the quality of production, which can have a serious economic impact. Transportation disruptions continue to hamper supply chains and affect companies' ability to meet their export commitments. The environmental consequences, particularly the large amount of debris, pose a major challenge. The lack of a comprehensive disaster waste plan at the central government level leads to inadequate waste management. The study recommends sorting the debris at temporary sites to obtain reusable items while paying attention to the sustainability and transparency of debris management processes. In summary, this comparative case study highlights the need for tailored approaches to address the different impacts in the 11 provinces. A one-size-fits-all solution is insufficient and an individual needs assessment is needed for each province in order to implement targeted economic and environmental recovery measures.
  • conferenceobject.listelement.badge
    Experimental Study on Increase of Bonding Strength of FRP Reinforcement in Concrete
    (SPRINGER LINK, 2022) Taskin, Furkan; Ciftci, Cihan; 0000-0001-9199-6437; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Taskin, Furkan; Ciftci, Cihan
    In the last two decades, the use of fiber-reinforced polymer (FRP) bars is of great interest to reinforce concrete beam structures due to its high specific strength, effective corrosion resistance, and low cost fabrication. Therefore, the flexural performance of these reinforced concrete beams containing FRP bars has been investigated by researchers for years with great interest. According to these investigations, one of the major problems is weak bonding strength between these bars and concrete material. Since, this major problem causes low flexural capacity, high deflection, and high crack widths for the reinforced concrete beams. Hence, the use of FRP bars by engineers does not sufficiently become widespread and also the engineering applications of these useful materials are still limited today. In this study, it is aimed to present an applicable solution regarding the bonding failures of the FRP bars in structurally reinforced concrete beams. For this solution, reinforced concrete beam samples were produced by using FRP materials on which knotted structures were formed. Then these samples were tested under 3-point bending tests. Furthermore, smooth-surfaced FRP bars and traditional deformed steel rebars were also used as reinforcing materials in the concrete beam samples for the comparison of the flexural capacities of each sample in order to investigate the effects of the reinforcing materials on the bonding strength. To conclude, the knotted FRP bars provide a significant contribution on the flexural capacity due to the increase of the bonding strength between the reinforcing material and the concrete in the beams.
  • bookpart.listelement.badge
    Developing New Empirical Formulae for the Resilient Modulus of Fine-Grained Subgrade Soils Using a Large Long-Term Pavement Performance Dataset and Artificial Neural Network Approach
    (SAGE Publications Ltd, 2022) Fedakar, Halil Ibrahim; 0000-0002-7561-5363; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Fedakar, Halil Ibrahim
    Artificial neural network (ANN) has been successfully used for developing prediction models for resilient modulus (Mr). However, no reliable Mr formula derived from these models has been proposed in previous studies, although engineers/ researchers need empirical formulae for hand calculation of Mr. Therefore, this study aimed to propose reliable empirical formulae for the Mr of fine-grained soils using ANN. For this purpose, thousands of ANN models were developed using the long-term pavement performance (LTPP) and external datasets. The input parameters were the percentage of soil particles passing through #200 sieve (P200), silt percentage (SP), clay percentage (CP), liquid limit (LL), plasticity index (PI), maximum dry density ([rdry]max), optimum moisture content (wopt), confining pressure (sc), and nominal maximum axial stress (sz). The ANN models were compared with several constitutive models. The results indicate that the constitutive models failed to predict the Mr, and the best Mr predictions were obtained by the ANN-C9 (P200, SP, CP, LL, PI, sc, and sz), ANN-C10 (P200, SP, CP, [rdry]max, wopt, sc, and sz), and ANN-C11 (P200, SP, CP, LL, PI, [rdry]max, wopt, sc, and sz) models. Thus, the structures of these ANN models were formulated and proposed as the new empirical formulae for the Mr of fine-grained soils. Sensitivity analysis was also performed on these ANN models. It was determined that (rdry)max is the most influential parameter in the ANN-C10 model, and LL is the most influential parameter in the ANN-C9 and ANN-C11 models. On the other hand, sc and sz are the least influential parameters.
  • Research Project
    GEAKDES: Gerçek Zamanlı Deprem Afet / Süreç Yönetimi İçin Yapay Zekâ Temelli Akıllı Karar Destek Sistemi
    (TRDizin, 2024) Özmen, Mihrimah; Akın, Müge; Yüksel, Muhammed Burak; Dedetürk, Bilge Kağan; Özcan, Orkan; 0000-0001-8873-5287; 0000-0002-8026-5003; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Akın, Müge; Dedeturk, Bilge Kağan
    Depremler, dünya genelinde sıkça görülen ve ciddi etkiler yaratan doğal felaketlerdir. Modern teknoloji, özellikle sismik olarak aktif bölgelerde, gerçek zamanlı sismik ölçümlerle hızlı müdahale imkanı sağlar. Deprem sonrası hızlı ve doğru hasar tespiti, acil yardım ve kurtarma operasyonlarının etkin yönetilmesini sağlar. Depremlerin dünya çapında ekonomik ve insan kayıpları büyük boyutlardadır, özellikle sismik olarak aktif bölgelerde tehdit oluşturur. Bina güçlendirme çalışmaları ve afet önleme planları, toplumların depremlere karşı direncini artırabilir. Makine öğrenimi ve yapay zeka, depremle ilgili konularda önemli uygulamalara sahiptir. Bu teknolojiler, deprem hasar tahmini, sismik aktivite tahmini ve bina güçlendirme stratejilerinde kullanılır. GEAKDES projesi, bütünleşik bir afet karar destek sistemi sunmaktadır. Gerçek zamanlı makine öğrenmesi algoritmaları, deprem hasar tahminini bina, deprem, zemin gibi karakteristik özelliklerden elde ederek gerçekleştirmektedir. Bu bilgiler, uydu görüntü analizleri ile birleştirilerek daha yüksek doğrulukla deprem hasar tahmini yapılmasını sağlamaktadır. Ayrıca, deprem sonrası yardım ihtiyaçlarını tespit ederek lojistik ağ modeli çalıştırılmakta ve yardım rotaları belirlenmektedir. Proje kapsamında geliştirilen Maliyet Duyarlı Paralel ABC-ANN ve Maliyet Duyarlı Paralel GA algoritmaları, deprem hasar tahmininde yüksek doğruluk ve hızlı eğitim süreleriyle dikkat çekmektedir. Sentinel-2 ve Sentinel-1 uydu görüntüleri kullanılarak deprem sonrası hasar tespiti yapılmış, optik görüntülerle bina yıkımları, SAR görüntüleriyle zemindeki değişiklikler belirlenmiştir. Bu bilgilerin entegrasyonuyla %91 doğruluk elde edilmiştir. Açık kaynaklı Sentinel-1 SAR uydu görüntülerinin kullanımı, makine öğrenmesi yöntemlerine entegre edilerek deprem kaynaklı hasarın anlaşılmasına katkı sağlamıştır. GEAKDES, hasar tahmin bilgilerini kullanarak deprem bölgesi yardım ulaştırma planlamasına yönelik lojistik ağı modellemektedir. MM-CSA yaklaşımıyla rotalar hesaplanmış ve İkame Ürün Stratejisi ile pilot bölgelerde yardım dağıtım rotaları belirlenmiştir. Proje, elde edilen bilgi ve deneyimleri paylaşarak insanlığın faydalanmasını amaçlamaktadır.
  • conferenceobject.listelement.badge
    Rehabilitation of water and environment of the TKI - GELI/YLI opencast mine lakes
    (Chamber of Mining Engineers of Turkey, 2013) Delibalta, Mahmut Suat; Uzal, Niğmet; https://orcid.org/0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, Niğmet
    During the search, production and enrichment process of mining operations the air, soil, water resources and living organisms are affected adversely. In coal opencast production, with the rise of surface water and ground water level large or small ponds are composed. The most important environmental problems of these ponds are low pH (acidic characteristic) and high metal concentrations (Fe, Mn, Al, Cu, Pb, Zn etc.) of these ponds, besides the sulfide minerals containing (S04) and the waste materials. These ponds needed to be rehabilitated for is one the sustainability of natural resources. In this study, the average pH values 6.22-7.79, turbidity (NTU) 0.63-6.71, sulphate content 840-1720 mg/L, KOI 2.27-61.5mg/L and electrical conductivity 1.72 -2.71 mS/cm have been measured during the monitoring study of three different lignite opencast mine post-production lakes of the TKI -GELI and YLI. The results were evaluated within the framework of relevant laws and regulations. Analyses were performed in three-month periods.
  • bookpart.listelement.badge
    Properties of concrete with high-volume pozzolans
    (ELSEVIER, 2013) Uzal, Burak; 0000-0002-3810-7263; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, Burak
    This chapter focuses on the materials and properties of high-volume natural pozzolan (HVNP) concrete. The characteristics of natural pozzolans used in high-volume pozzolan mixtures are discussed, together with the fresh and hardened properties of HVNP cementitious systems, their hydration characteristics and their microstructures.