Browsing by Author "Uzal, Nigmet"
Now showing 1 - 20 of 36
- Results Per Page
- Sort Options
Article Citation - WoS: 10Citation - Scopus: 12Fabrication and Characterization of Silane-Functionalized Na-Bentonite Polysulfone/Polyethylenimine Nanocomposite Membranes for Dye Removal(Wiley, 2020) Saki, Seda; Senol-Arslan, Dilek; Uzal, NigmetIn this study, tetraethoxysilane (TEOS)-functionalized Na-bentonite incorporated into polysulfone/polyethylenimine (PSF/PEI) membranes were fabricated by phase inversion method for the efficient removal of methylene blue dye. For the preparation of PSF/PEI nanocomposite membranes, silane-functionalized Na-bentonite and pure Na-bentonite were used at three different concentrations (0.5, 1, and 2 wt%). The prepared membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, porosity, hydrophilicity, and water permeability measurements. Antifouling behaviors and methylene blue dye rejections of the PSF/PEI nanocomposite membranes were also tested. The obtained results showed that the addition of pure Na-bentonite and silane-functionalized Na-bentonite both increased the water permeability of the membranes. The PSF/PEI membrane containing 2 wt% silane-functionalized Na-bentonite showed the highest water flux of 105 L m(-2) h(-1), while the lowest water flux of 1.2 L m(-2) h(-1) was recorded for pure PSF membrane. Filtration results demonstrated that the antifouling capacity was significantly increased due to the negatively charged surface of the newly generated silane-functionalized Na-bentonite PSF/PEI membranes. In summary, TEOS-functionalized Na-bentonite can be used to fabricate PSF/PEI nanocomposite membranes with effective filtration ability, antifouling capacity with lower decay ratio, higher flux recovery ratio, and 99% methylene blue dye removal performance.Article Citation - WoS: 6Citation - Scopus: 6Characterizing Boron-Enhanced One-Part Alkaline-Activated Mortars: Mechanical Properties, Microstructure and Environmental Impacts(Elsevier Sci Ltd, 2024) Orklemez, Ezgi; Ilkentapar, Serhan; Durak, Ugur; Gulcimen, Sedat; Uzal, Nigmet; Uzal, Burak; Atis, Cengiz DuranSince alkali activators negatively effect the environmental impact assessment, it is necessary to develop the alternative activators from natural sources with low environmental impact. Therefore, in this study, the usage of boron refined products colemanite, ulexite and boron pentahydrate as activators in slag-based alkali-activated mortar systems was investigated in detail. Flexural and compressive strength tests, isothermal calorimetry measurement, thermogravimetric and differential thermal analysis, inductively coupled plasma mass spectrometry analysis, field emission scanning electron microscopy, and energy dispersive analysis and elemental mapping and X-ray diffraction analysis were carried out on the samples. In addition, sample production was subjected to life cycle analysis (LCA) with a cradle-to-gate approach using two different transportation scenarios. According to the results obtained, it was determined that colemanite, ulexite and boron penta hydrate, when used in optimum proportions, had a positive effect on strength (up to increase 40% compressive strength by 20% ulexite replacement) and could be used as an activator in slag-based alkali-activated systems. The positive results obtained in strength as a result of using boron-refined products are also supported by other test results conducted within the scope of the study. Furthermore, according to the LCA results, it was observed that there was a significant decrease in global warming potential with the substitution of 20% colemanite, ulexite or boron pentahydrate as activators, not only compared to the reference sample but also traditional cementitious systems.Article Citation - WoS: 54Citation - Scopus: 60Enhanced Hydrophilicity and Mechanical Robustness of Polysulfone Nanofiber Membranes by Addition of Polyethyleneimine and Al2O3 Nanoparticles(Elsevier, 2017) Uzal, Nigmet; Ates, Nuray; Saki, Seda; Bulbul, Y. Emre; Chen, YongshengA novel hydrophilic and mechanically robust polysulfone (PSF) nanofiber membrane (NFM) was prepared by electrospinning of a PSF solution blended with polyethyleneimine (PEI) and Al2O3 nanoparticles. The influence of PEI and Al2O3 nanoparticles concentration on the NFM characteristics was studied using scanning electron microscopy (SEM), Fourier transform infrared FT-IR spectroscopy, porosity, water contact angle measurement, and tensile strength test. Filtration performance of the nanofiber membranes (NFMs) were evaluated by the measurement of pure water flux (PWF) and bovine serum albumin (BSA) rejection tests. According to the results, blending PSF solution with 2 wt.% PEI and 0.05 wt.% Al2O3 nanoparticles resulted in formation of NFMs with high porosity and increased mechanical strength, which exhibited a low water contact angle of 23.5 and high water flux of 28,456 L/m(2) h. On the other hand, incorporation of nanoparticles and PEI in the PSF membrane matrix led to increasing of tensile strength that it was changed from 0.15 to 0.69 for pure PSF and PSF/PEI/Al2O3, respectively. A-24 and 48% BSA rejection performances were obtained by nanoparticle incorporated PSF membranes. In conclusion, the studies strongly suggest that blending with hydrophilic additives of NFMs can enhance the hydrophilicity and mechanical strength of PSF membranes and these NFMs can be effectively used in water based membrane systems. (C) 2017 Elsevier B.V. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 5Predicting Potential of Pressure Retarded Osmosis Power for Different Estuaries in Turkey(Wiley, 2019) Saki, Seda; Uzal, Nigmet; Gokcek, Murat; Ates, NurayPressure retarded osmosis (PRO) is an alternative renewable energy source recovered from the salinity gradient between the fresh water (feed solution) and salty water (draw solution). In order to implement osmotic power, the site-specific characteristics including the river and sea salinity, annual flow rates, ecological restrictions were taken into account. This study revealed a comprehensive analysis for a theoretical potential of PRO process for different estuaries in Turkey. In this study, the power potential prediction of PRO process for the Ceyhan, Sakarya, and Meric Rivers were analyzed via Gibbs free energy calculations. The net annual energy production is projected to be 167, 164, and 208 GWh/y for Ceyhan, Sakarya, and Meric Rivers, respectively. Meric River has the highest energy production of 208 GWh/yr with 186 m(3)/s mean flow rate and 245 mg/L salinity. These results clearly show that Turkey's rivers having high salinity and flow rate are feasible and applicable for making the osmotic power plant economically. Thereby, it is providing essential direction to the improvement of its design, installation, and operation. The developed methodology for the evaluation of the osmotic power potential of other rivers can be considered as a basis to assess the whole potential on a worldwide level. (c) 2018 American Institute of Chemical Engineers Environ Prog, 38:e13085, 2019Conference Object Citation - WoS: 4Citation - Scopus: 5The Selection of Washing Machine Programs With Fuzzy Dematel and Moora-Ratio Multi-Criteria Decision-Making Methods Considering Environmental and Cost Criteria(Elsevier Science inc, 2024) Fidan, Fatma Sener; Aydogan, Emel Kizilkaya; Uzal, NigmetThe washing machine is the prevalent white household equipment in contemporary society. These machines provide consumers with a range of program options that encompass several variables, including temperature and detergent type. Nevertheless, the selection made by individual customers about the washing machine program they opt for carries substantial environmental consequences during the use stage of textile products. According to studies on the life cycle of clothes, it has been established that the use stage, following the extraction of raw materials, exerts the most substantial influence on environmental impacts. The objective of this research is to assess the washing machine programs provided by the manufacturer through the application of a comprehensive systematic approach for analysis. The evaluation of scenarios for washing machine programs was conducted using the MOORA-Ratio multi-criteria decision-making process. This evaluation considered various parameters, including environmental impact and cost. The life cycle assessment methodology was employed to quantify the environmental impact of the specified criteria. Based on the comprehensive study conducted by integrating criteria across numerous dimensions, it has been determined that the most favorable scenario wass scenario 1, which was developed for the Cotton 20 C program. The primary objective of this research endeavor is to fill a significant need in the current body of literature by undertaking a comprehensive review of washing machine programs that have not been previously recorded. This study employs a comprehensive methodology to investigate the environmental and economic implications linked to these activities, with the objective of delivering significant insights to producers and users.Article Citation - WoS: 12Citation - Scopus: 12Removal of Pesticides From Secondary Treated Urban Wastewater by Reverse Osmosis(Springer Heidelberg, 2023) Ates, Nuray; Uzal, Nigmet; Yetis, Ulku; Dilek, Filiz B.The residues of pesticides that reach water resources from agricultural activities in several ways contaminate drinking water resources and threaten aquatic life. This study aimed to investigate the performance of three reverse osmosis (RO) membranes (BW30-LE, SW30-XLE, and GE-AD) in rejecting four different pesticides (tributyl phosphate, flutriafol, dicofol, and irgarol) from secondary treated urban wastewater and also to elucidate the mechanisms underlying the rejection of these pesticides. RO experiments were conducted using pesticide-spiked wastewater samples under 10 and 20 bar transmembrane pressures (TMP) and membrane performances were evaluated. Overall, all the membranes tested exhibited over 95% rejection performances for all pesticides at both TMPs. The highest rejections for tributyl phosphate (99.0%) and irgarol (98.3%) were obtained with the BW30-LE membrane, while for flutriafol (99.9%) and dicofol (99.1%) with the GE-AD membrane. The increase in TMP from 10 to 20 bar did not significantly affect the rejections of all pesticides. The rejection performances of RO membranes were found to be governed by projection area as well as molecular weight and hydrophobicity/hydrophilicity of pesticides. Among the membranes tested, the SW30-XLE membrane was the most prone to fouling due to the higher roughness.Article Citation - WoS: 1Citation - Scopus: 1Pre-Concentration of Municipal Wastewater Using Flocculation-Assisted Direct Ceramic Microfiltration Process: Optimization of Operational Conditions(Springer int Publ Ag, 2022) Ozcan, Ozlem; Sahinkaya, Erkan; Uzal, NigmetDirect ceramic microfiltration (DCMF) is an effective technology to pre-concentrate organic matter (OM) for the subsequent anaerobic energy-recovering processes and a fast, cost-effective, easy treatment process for municipal wastewater. The major problem in DCMF is the rapid fouling of the membrane. In this study, to maximize OM recovery rates and prevent membrane fouling, the DCMF process was alternately paired with dosing of a cationic polyacrylamide (PAM) flocculant and chemically enhanced primary sedimentation (CEPS). The DCMF process tested in three stages: (i) optimization of flocculant concentration (0.5, 1, 1.5, and 2 mg/L PAM) and dosing point, (ii) optimization of operational conditions (pH, filtration/backwash duration, flux, and recovery rate) to control membrane fouling, and (iii) long-term operation of the DCMF process. The influence of PAM dosage points on DCMF fouling behavior was explored, and system operating parameters in terms of OM recovery and TMP change were optimized. The CEPS + DCMF setup was discovered to be a potential option for overcoming fouling. The highest chemical oxygen demand (COD) was 520 +/- 20 mg/L in the concentrated wastewater using CEPS + DCMF experiments for 0.5 mg/L PAM. The highest OM pre-concentration was achieved at 90% recovery rate. After the optimization, COD concentration in the concentrate of the DCMF process reached 822 mg/L for the long-term (20 days) operation. The net potential energy production was calculated as 0.28 kWh/m(3) considering the theoretical COD of 1432 mg/L in the concentrate stream. As a novel approach, the CEPS + DCMF process can be used in place of conventional municipal wastewater treatment processes due to its acceptable OM removal performance, simple operation, small footprint, and potential energy generation.Article Citation - WoS: 31Citation - Scopus: 36Machine Learning-Aided Inverse Design and Discovery of Novel Polymeric Materials for Membrane Separation(Amer Chemical Soc, 2024) Dangayach, Raghav; Jeong, Nohyeong; Demirel, Elif; Uzal, Nigmet; Fung, Victor; Chen, YongshengPolymeric membranes have been widely used for liquid and gas separation in various industrial applications over the past few decades because of their exceptional versatility and high tunability. Traditional trial-and-error methods for material synthesis are inadequate to meet the growing demands for high-performance membranes. Machine learning (ML) has demonstrated huge potential to accelerate design and discovery of membrane materials. In this review, we cover strengths and weaknesses of the traditional methods, followed by a discussion on the emergence of ML for developing advanced polymeric membranes. We describe methodologies for data collection, data preparation, the commonly used ML models, and the explainable artificial intelligence (XAI) tools implemented in membrane research. Furthermore, we explain the experimental and computational validation steps to verify the results provided by these ML models. Subsequently, we showcase successful case studies of polymeric membranes and emphasize inverse design methodology within a ML-driven structured framework. Finally, we conclude by highlighting the recent progress, challenges, and future research directions to advance ML research for next generation polymeric membranes. With this review, we aim to provide a comprehensive guideline to researchers, scientists, and engineers assisting in the implementation of ML to membrane research and to accelerate the membrane design and material discovery process.Article Citation - WoS: 17Citation - Scopus: 24Clarification of Apple Juice Using New Generation Nanocomposite Membranes Fabricated With TiO2 and Al2O3 Nanoparticles(Springer, 2020) Severcan, Solmaz Sebnem; Uzal, Nigmet; Kahraman, KevserTo enhance anti-fouling properties of polymeric membranes during apple juice clarification, PSF/PEI (20/2 wt%) ultrafiltration (UF) membranes were modified with TiO2 and Al2O3 nanoparticles using the phase inversion method. Turbid apple juice samples were clarified using cross-flow membrane filtration system. All fabricated nanocomposite UF membranes had higher apple juice flux values than PSF/PEI membrane. Membrane prepared with 0.01% TiO2 (UFT1) had the highest apple juice flux (at steady state, 44.6 L/m(2)h). The FRR (%) value of TiO2 and Al2O3 incorporated UF membranes was between 90.9-94.0% and 79.6-97.6%, respectively, and these FRR values were higher than that of PSF/PEI membrane (UF2, 60.3%). Porosity and hydrophilicity of the UF membranes significantly increased with the addition of nanoparticles and the highest porosity and hydrophilicity was achieved in the 0.01% TiO2 incorporated UF membrane (UFT1) membrane. Higher flux recovery ratio (FRR) and lower relative flux reduction (RFR) values of Al2O3 and TiO2 incorporated nanocomposite membranes, compared with the unmodified membrane, demonstrated the enhancement in the anti-fouling properties of the PSF/PEI membrane. SEM images of the nanocomposite membranes also proved the nanoparticle incorporation to the PSF/PEI matrix. Color, turbidity, total soluble solid, total phenolic content, and antioxidant capacity of the samples using nanocomposite membranes were better than that of clarified using both commercial and unmodified membranes. TiO2 incorporated nanocomposite membranes had superior performance than Al2O3 incorporated nanocomposite membranes and among these membranes, the ones prepared with the addition of 0.01 wt% TiO2 exhibit the best performance in terms of clarification of apple juice.Research Project İnce Film Kompozit Membranlar ile Basınç Geciktirmeli Ozmos (PRO) Prosesi Kullanılarak Sürdürülebilir Enerji Üretimi(TUBİTAK, 2018) Uzal, NigmetFosil yakıtlara bağımlılığın azalması için alternatif yenilenebilir ve temiz enerji kaynaklarının_x000D_ bulunmasına yönelik araştırmalar gün geçtikçe artmakta ve önem kazanmaktadır. Son_x000D_ yıllarda oldukça ilgi çeken “tuzluluk gradyanı esaslı ozmotik enerji” veya “mavi enerji” olarak_x000D_ da bilinen enerji kaynağı, artan enerji ihtiyacını karşılamada farklı bir yenilenebilir kaynak_x000D_ olarak ortaya çıkmıştır. Ülkemizdeki tuzluluk gradyanı esaslı enerji potansiyelinin_x000D_ değerlendirilmesine yönelik ilk çalışma niteliğine olan bu projede öncelikle Devlet Su_x000D_ İşlerinden (DSİ) elde edilen nehir debi ve tuzluluk değerleri esas alınarak teorik enerji_x000D_ potansiyeli hesaplamaları gerçekleştirilmiştir. Teorik hesaplamalar tamamlandıktan sonra,_x000D_ enerji potansiyelinin deneysel olarak belirlenmesi için sentetik ve gerçek su örnekleri_x000D_ kullanılarak basınç geciktirmeli ozmos (PRO) prosesinde deneysel çalışmalar_x000D_ gerçekleştirilmiştir. Bu amaçla dört farklı (BW30-LE, SW30-HR, AG, AC) ticari ince film_x000D_ kompozit (TFC) ters osmos membran 3-(3,4-Dihydroxyphenyl)-L-alanine (L-DOPA) ve LDOPA ile birlikte nanomalzemeler (MWCNT, TiO2, SiO2, Al2O3) kullanılarak modifiye edilmiş_x000D_ ve PRO sisteminde işletilerek enerji üretim performansı lab-ölçekli deneyler ile belirlenmiştir._x000D_ TFC yapıdaki RO membranların modifikasyonu sonrası aktif yüzeylerinde meydana gelen_x000D_ yapısal değişiklerin belirlenmesinde SEM, FTIR, temas açısı, ve AFM analizleri_x000D_ gerçekleştirilmiştir. Deney sonuçları ışığında L-DOPA ile birlikte %1wt TiO2 nanomalzeme ile_x000D_ modifiye edilmiş BW30-LEmembranı 1,61 W/ m2 en yüksek PRO güç üretim potansiyelini_x000D_ göstermiştir. Gerçek su örnekleri ile gerçekleştirilen PRO deneylerinde Akdeniz, Karadeniz,_x000D_ Marmara ve Ege Denizlerinden deniz suyu ve bu denizlere dökülen Seyhan, Ceyhan, Büyük_x000D_ Menderes, Gediz, Susurluk, Kızılırmak ve Yeşilırmak nehirlerinin karıştığı noktalardan_x000D_ örnekler alınarak ülkemizde tuzluluk gradyanı esaslı bu enerjiye ilişkin potansiyel_x000D_ belirlenmiştir. Geçek su numunelerinde en yüksek enerji üretim performansı 56,8 mS/cm_x000D_ iletkenliğe sahip Akdeniz ile 586 µS/cm iletkenliğe sahip Ceyhan ve Seyhan nehrinin PRO_x000D_ prosesi uygulamasından 5 ve 10 barda sırasıyla 0,47 ve 0,68 W/m2 olarak bulunmuştur.Article Citation - WoS: 26Citation - Scopus: 31Life Cycle Sustainability Assessment of a Light Rail Transit System: Integration of Environmental, Economic, and Social Impacts(Wiley, 2021) Gulcimen, Sedat; Aydogan, Emel K.; Uzal, NigmetThe transition toward sustainable urban transportation has gained importance in recent decades. However, urban transportation has not been addressed for all dimensions of sustainability. This study presents a life cycle sustainability assessment of a light rail transit system in Kayseri, Turkey, by integrating environmental, economic, and social aspects. The sustainability performance of the light rail transit system is evaluated using a cradle-to-grave approach to assess three aspects of sustainability. For the environmental evaluation, a life cycle assessment was applied using SimaPro 8.4.1 PhD version based on ISO 14040 and 14044. The method, which includes nine environmental impact categories, was employed to assess the environmental performance of the light rail transit system with a functional unit of 1 passenger-km. For the economic assessment, life cycle costing was utilized with the functional unit of USD for 1 passenger-km. A social life cycle assessment was applied to assess the social performance of the light rail transit system based on guidelines published by the United Nations Environment Programme in collaboration with the Society of Environmental Toxicology and Chemistry. For the determination of social impacts, 11 subcategories and 18 social indicators were selected. The results showed that the global warming potential and abiotic depletion potential of the light rail system per passenger-km were 2.4E - 02 kg CO2 eq. and 2.7E - 01 MJ, respectively, with a service life of 50 years. The total life cycle cost of the light rail system was calculated as 0.046 USD for 1 passenger-km. The results also revealed that the main contributor to the total life cycle cost was energy cost, with 92% (2.88E + 08 USD) of the total cost. In the social performance evaluation, it is found that the industry performs well for society, the local community, and workers but has a weaker social performance for the consumer due to a weak feedback mechanism. Integr Environ Assess Manag 2021;00:1-13. (c) 2021 SETACArticle Citation - WoS: 4Citation - Scopus: 5Robust Multicriteria Sustainability Assessment in Urban Transportation(ASCE-Amer Soc Civil Engineers, 2023) Gulcimen, Sedat; Aydogan, Emel Kizilkaya; Uzal, NigmetDeveloping methodologies to facilitate the planning of sustainable transport systems for decision makers (DMs) is becoming more critical. This study proposed a methodological framework for sustainable urban transportation to make decisions during urban transportation's design and planning stages. Urban transportation alternatives were evaluated by sustainability indicators that considered a triple bottom line approach's environmental, economic, and social aspects. To choose the best alternative sustainable transportation scenarios, two multicriteria decision-making (MCDM) methods, for example, a hesitant fuzzy analytical hierarchy process (HF-AHP) and multiple attribute utility model (MAUT), were integrated. First, eight sustainable transportation indicators that considered data availability from the transport sector were selected. The weights of the selected indicators were calculated using an HF-AHP. These indicators included carbon dioxide (CO2) emissions, energy consumption, depletion of nonrenewable resources, operational and maintenance costs, fuel and taxes, the number of fatalities or injuries, and motor vehicles for public transport per 10,000 population. Finally, sensitivity analysis was applied to validate the robustness. Based on HF-AHP results, the number of fatalities or injuries was the most significant among the eight indicators, with a 0.158 normalized weight (N-i). The results of this integrated methodology highlighted that Alternative 11, which was dominated by low-motorized vehicles (low-MVs), was the best sustainable alternative and Alternative 1 was the worst sustainable alternative, which was dominated by high-MVs with 0.69 and 0.27 total utility values, respectively. Low-motorized urban transportation alternatives showed higher sustainable performances than the motorized and high-motorized alternatives. This study proposed a novel and robust methodology for decisions on sustainable urban transportation projects and renovating current urban transportation systems.Article Citation - WoS: 16Citation - Scopus: 23Recovery of Caustic From Mercerizing Wastewaters of a Denim Textile Mill(desalination Publ, 2015) Varol, Cihangir; Uzal, Nigmet; Dilek, Filiz B.; Kitis, Mehmet; Yetis, UlkuThe objective of this study was to evaluate caustic recovery from mercerizing wastewater originating from a denim textile producing plant using membrane technology. For this purpose, ultrafiltration (UF) and nanofiltration (NF) processes were considered. In the first stage, in an attempt to control the possible membrane fouling, pretreatment alternatives of flocculation, centrifugation, and microfiltration were evaluated. These pretreatment application alternatives were unsuccessful as they did not provide considerable color and solids removal. In the second stage, UF and NF processes were tested using a tight UF membrane (GR95PP, Alfalaval) and three NF membranes (NP010 and NP030, Microdyn Nadir, and MPF34, Koch Membranes) to accomplish the caustic recovery without applying any pretreatment. The best performance was obtained with NP010 NF in terms of permeate flux along with color and COD rejections. Then, for this membrane the effects of transmembrane pressure (4.03 and 6.23 bar), cross-flow velocity (from 0.40 to 1.40 m/s), and feed temperature (20 and 40 degrees C) were investigated. Temperature positively affected the permeate flux without significant loss in recovery and rejections. Caustic stream produced had about 98-100% of NaOH in the feed at a concentration of 30-40 g/L and therefore was recyclable after a concentration process.Article Citation - WoS: 16Citation - Scopus: 16Arsenic Removal by the Micellar-Enhanced Ultrafiltration Using Response Surface Methodology(Iwa Publishing, 2020) Gokcek, Oznur Begum; Uzal, NigmetThe present research investigates the removal of arsenic (As) from aqueous solutions using micellar-enhanced ultrafiltration (MEUF) by utilizing two different surfactants: benzethonium chloride and dodecyl pyridinium chloride (BCl and DPCl). The impact of the operating variables and maximum removal efficiency were found under different conditions for BCl and DPCl surfactants. The maximum As rejection efficiency for MEUF with BCl and DPCl surfactants is 92.8% and 84.1%, respectively. In addition to this, a statistics-based experimental design with response surface methodology was used for the purpose of examining the impact of operating conditions, including initial pH, initial As concentration (ppb), and surfactant concentration (BCl, mM) in As-removal from aqueous solutions. In the analysis of the experimental data, a second-order polynomial model that was validated by statistical analysis for the BCl surfactant was used. On the basis of the response model created, the removal of As ions was acquired at optimum operating parameters, including the initial As concentration of 150 ppb, surfactant concentration of 5 mM and pH 10 for the BCl surfactant with 92.8% As-removal efficiency.Article Citation - WoS: 42Citation - Scopus: 48Life Cycle Assessment of Lightweight Concrete Containing Recycled Plastics and Fly Ash(Taylor & Francis Ltd, 2022) Ersan, Yusuf Cagatay; Gulcimen, Sedat; Imis, Tuba Nur; Saygin, Osman; Uzal, NigmetResearchers put significant effort to decrease the environmental impact of concrete by using industrial by-products as an alternative binder. However, the considerable environmental impact still exists due to the consumption of natural resources as aggregates. Natural aggregates are the most used resources by volume in the construction sector. Therefore, it is necessary to investigate by-products as an alternative to natural aggregates as well. This study presents the environmental impact of lightweight concrete (LWC) produced by replacing natural aggregates with recycled waste plastic (polyethylene) (RWP) and partially replacing Portland cement with Class F fly ash (FA). Life Cycle Assessment (LCA) was performed to compare a conventional LWC, containing pumice as natural aggregate and Portland cement as a binder, with green LWC, containing 30% RWP as pumice replacement and 20% FA as cement replacement. These scenarios were evaluated in terms of global warming potential, abiotic depletion, ozone layer depletion, terrestrial ecotoxicity, photochemical oxidation, acidification and eutrophication. LCA was coupled with mechanical tests at 7 days and 28 days. RWPs were found to be an environment-friendly replacement material for natural lightweight aggregates with an overall decrease in all CML-IA impacts except eutrophication. Tested green mix design also provided sufficient strength for nonstructural applications.Article Efficiency of L-DOPA+TiO2 Modified RO Membrane on Salinity Gradient Energy Generation by Pressure Retarded Osmosis(Pamukkale Univ, 2024) Ates, Nuray; Saki, Seda; Gokcek, Murat; Uzal, NigmetHarvesting energy from the salinity gradient of seawater and river water using pressure retarded osmosis (PRO) has been a major research topic of recent years. However, there is a need for efficient PRO membranes that can generate high power density and are pressure resistant, as the performance of current membranes on the market is poor. In this study, specific energy potential of PRO process using LDOPA+TiO2 modified BW30-LE membrane was evaluated on synthetic and real water samples. Polyamide BW30-LE RO membrane was modified by L-DOPA, L-DOPA+0.5 wt% TiO2 and L-DOPA+1 wt% TiO2. The effect of hydraulic pressure and temperature on generation of power density were evaluated for 5, 10, and 15 bar pressures, as well as 10 degrees C, 20 degrees C, and 30 degrees C degrees. The incorporation of TiO2 nanoparticles with L-DOPA increased the water flux by increasing the surface hydrophilicity and roughness of the membrane surface. The maximum specific power was observed as 1.6 W/m(2) for L-DOPA+1 wt% TiO2 modified BW30-LE membrane at 15 bar pressure. Besides, Mediterranean and Aegean, Black Sea water samples were used as draw solution and Seyhan, Ceyhan, Buyuk Menderes, Gediz, Yesilirmak, and Kizilirmak Rivers were used as feed solution. The highest osmotic power density was obtained by using L-DOPA+1 wt% TiO2 modified BW30-LE membrane with Ceyhan River as feed and Mediterranean Sea water as draw solution, which have the highest differences in salinity. In the mixture of Mediterranean and Ceyhan River, the highest power density was obtained at 10 bar pressure at 30 +/- 5 degrees C with 0.70 W/m(2).Article Citation - WoS: 3Citation - Scopus: 3Investigation of the Treatability of Pre-Coagulated Slaughterhouse Wastewater Using Dead-End Filtration(Wiley, 2021) Ozdemir, Safiye; Uzal, Nigmet; Gokcek, Oznur BegumBACKGROUND In the present study, the performance of the membrane process, one of the advanced treatment methods that can enable the reuse of slaughterhouse wastewater, was evaluated. The wastewater was treated using ultrafiltration (UF) (10, 50 kDa), nanofiltration (NF) (150-300 DA) and reverse osmosis (RO) (500 kDa) membranes alone, and UF + NF, UF + RO membrane combinations at different pressures. In addition to rejection and permeate flux considerations, it was attempted to select the most effective membrane by performing scanning electron microscopy, Fourier transform infrared, contact angle, and atomic force microscopy analyses of the membranes used. RESULTS As a result of the experiments, the highest flux was observed at 5 bar for the 50 kDa UF membrane. When the performances of the sequential application of 10 and 50 kDa UF membranes followed by NF and RO membranes were evaluated, the highest flux was obtained for the sequential application of the 50 kDa UF membrane with the NF membrane as 19.68 and 9.05 L m(-2) h, respectively. CONCLUSION The highest chemical oxygen demand (COD) removal was obtained for the RO membrane at 20 bar as 88.67%, and for the 50 kDa UF + RO sequential application, the COD removal was increased from 70% to 88.67%. (c) 2021 Society of Chemical Industry (SCI).Article Citation - WoS: 57Citation - Scopus: 64Preparation and Characterization of PSF/PEI Nanocomposite Membranes for Oil/Water Separation(Springer Heidelberg, 2018) Saki, Seda; Uzal, NigmetUltrafiltration (UF) is one of the significant advanced processes for oily wastewater treatment due to its clear advantages, for instance, ease in operation and efficient separation. The main drawback of these processes is the fouling problem and many researchers' effort on fabrication of high-performance membranes with higher hydrophilicity and antifouling properties. In this study, flat-sheet polysulfone (PSF)/polyethylenimine (PEI)/CaCO3 nanocomposite membranes were prepared by phase inversion method for oil/water emulsion separation. Structural properties of membranes were characterized by SEM, FT-IR, contact angle, tensile strength, and atomic force microscopy analysis. Increasing the CaCO3 nanoparticle loading exhibited the increased the water flux and BSA rejection. PSF/PEI/10 wt% CaCO3 nanocomposite membranes have 145 L/m(2) h water flux at 2 bar with a contact angle of 84 degrees and with 92% BSA rejection. All prepared CaCO3 nanocomposite membranes reached similar oil rejections at above 90%. Besides the higher water flux and oil removal efficiencies, 10 wt% of CaCO3 nanoparticle-blended PSF membranes has notable antifouling capacity with the highest flux recovery ratio (FRR) and lowest flux decay ratio (DR) values. The results showed that there is a great potential to use PSF/PEI/CaCO3 nanocomposite membranes for the treatment of oil water emulsions with higher permeability and antifouling capacity.Article Citation - WoS: 53Citation - Scopus: 71Removal of Heavy Metals from Aluminum Anodic Oxidation Wastewaters by Membrane Filtration(Springer Heidelberg, 2018) Ates, Nuray; Uzal, NigmetAluminum manufacturing has been reported as one of the largest industries and wastewater produced from the aluminum industry may cause significant environmental problems due to variable pH, high heavy metal concentration, conductivity, and organic load. The management of this wastewater with a high pollution load is of great importance for practitioners in the aluminum sector. There are hardly any studies available on membrane treatment of wastewater originated from anodic oxidation. The aim of this study is to evaluate the best treatment and reuse alternative for aluminum industry wastewater using membrane filtration. Additionally, the performance of chemical precipitation, which is the existing treatment used in the aluminum facility, was also compared with membrane filtration. Wastewater originated from anodic oxidation coating process of an aluminum profile manufacturing facility in Kayseri (Turkey) was used in the experiments. The characterization of raw wastewater was in very low pH (e.g., 3) with high aluminum concentration and conductivity values. Membrane experiments were carried out with ultrafiltration (PTUF), nanofiltration (NF270), and reverse osmosis (SW30) membranes with MWCO 5000, 200-400, and 100 Da, respectively. For the chemical precipitation experiments, FeCl3 and FeSO4 chemicals presented lower removal performances for aluminum and chromium, which were below 35% at ambient wastewater pH 3. The membrane filtration experimental results show that, both NF and RO membranes tested could effectively remove aluminum, total chromium and nickel (> 90%) from the aluminum production wastewater. The RO (SW30) membrane showed a slightly higher performance at 20 bar operating pressure in terms of conductivity removal values (90%) than the NF 270 membrane (87%). Although similar removal performances were observed for heavy metals and conductivity by NF270 and SW30, significantly higher fluxes were obtained in NF270 membrane filtration at any pressure that there were more than three times the flux values in SW30 membrane filtration. Due to the lower heavy metal (< 65%) and conductivity (< 30%) removal performances of UF membrane, it could be evaluated as pretreatment followed by NF filtration to protect and extend NF membrane life. The water treated by both NF and RO could be recycled back into the process to be reused with economic and environmental benefits.Article Citation - WoS: 6Citation - Scopus: 7Evaluation of Diatomite Substitute With Thermal Power Plant Waste Fly Ash in Sustainable Geopolymer Through Life Cycle Assessment(Springer, 2025) Ilkentapar, Serhan; Orklemez, Ezgi; Durak, Ugur; Gulcimen, Sedat; Bayram, Savas; Uzal, Nigmet; Atis, Cengiz DuranThis research demonstrates the potential of diatomite as a fly ash replacement to improve mechanical properties and environmental sustainability and presents it as a viable alternative for sustainable construction. Additionally, a life cycle assessment (LCA) was conducted on the produced mortars to quantitatively compare their environmental impacts using a cradle-to-gate approach. In mixtures, it was used by replacing the diatomite in the ratios of 1%, 2%, 3%, 4%, and 5% by weight of the fly ash. Workability, unit weight, flexural and compressive strength, abrasion resistance, elevated temperature resistance and microstructure analysis were carried out. The results indicated that replacing 1%, 2%, and 3% diatomite increased the compressive and flexural strength of mortars due to their higher specific surface area. Two percent replacement of diatomite provided the best results. FESEM results of 3% diatomite inclusion showed more intense and compact microstructure of geopolymer. Diatomite inclusion increased the abrasion resistance of geopolymer. Since 2% diatomite replacement was found to be optimum, the LCA results showed that geopolymer mortar with 2% diatomite has 25% lower impacts in terms of global warming potential and 10% lower impacts in terms of terrestrial ecotoxicity than conventional Portland cement mortar.

