Pre-Concentration of Municipal Wastewater Using Flocculation-Assisted Direct Ceramic Microfiltration Process: Optimization of Operational Conditions

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Springer int Publ Ag

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Direct ceramic microfiltration (DCMF) is an effective technology to pre-concentrate organic matter (OM) for the subsequent anaerobic energy-recovering processes and a fast, cost-effective, easy treatment process for municipal wastewater. The major problem in DCMF is the rapid fouling of the membrane. In this study, to maximize OM recovery rates and prevent membrane fouling, the DCMF process was alternately paired with dosing of a cationic polyacrylamide (PAM) flocculant and chemically enhanced primary sedimentation (CEPS). The DCMF process tested in three stages: (i) optimization of flocculant concentration (0.5, 1, 1.5, and 2 mg/L PAM) and dosing point, (ii) optimization of operational conditions (pH, filtration/backwash duration, flux, and recovery rate) to control membrane fouling, and (iii) long-term operation of the DCMF process. The influence of PAM dosage points on DCMF fouling behavior was explored, and system operating parameters in terms of OM recovery and TMP change were optimized. The CEPS + DCMF setup was discovered to be a potential option for overcoming fouling. The highest chemical oxygen demand (COD) was 520 +/- 20 mg/L in the concentrated wastewater using CEPS + DCMF experiments for 0.5 mg/L PAM. The highest OM pre-concentration was achieved at 90% recovery rate. After the optimization, COD concentration in the concentrate of the DCMF process reached 822 mg/L for the long-term (20 days) operation. The net potential energy production was calculated as 0.28 kWh/m(3) considering the theoretical COD of 1432 mg/L in the concentrate stream. As a novel approach, the CEPS + DCMF process can be used in place of conventional municipal wastewater treatment processes due to its acceptable OM removal performance, simple operation, small footprint, and potential energy generation.

Description

Keywords

Direct Membrane Filtration, Ceramic Membrane, Pre-Concentration, Chemically Enhanced Primary Sedimentation, Municipal Wastewater, Organic Matter Recovery

Turkish CoHE Thesis Center URL

Fields of Science

01 natural sciences, 0105 earth and related environmental sciences

Citation

WoS Q

Q2

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
1

Source

Water Air and Soil Pollution

Volume

233

Issue

10

Start Page

End Page

PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 6

SCOPUS™ Citations

1

checked on Feb 03, 2026

Web of Science™ Citations

1

checked on Feb 03, 2026

Page Views

1

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.20065506

Sustainable Development Goals

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo