Nanotanecikler İçeren Yüksek Miktarda Doğal Puzolan Katkılı Çimentolar: Özellikler, Hidratasyon ve Hamur İç Yapısı
Loading...
Date
2015
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
TUBİTAK
Abstract
Çimento sektörü dünya genelinde atmosfere salınan CO2 gazının %7’sinden tek başına
sorumludur. Çimento sektörü odaklı CO2 emisyonlarının azaltılabilmesinde en etkin yol,
çimentolardaki mineral katkı kullanım oranının yükseltilebilmesidir. Bunun önündeki en büyük
engel göreceli olarak yüksek miktarda mineral katkılı çimentoların geç priz süreleri, düşük
dayanımları ve yüksek büzülme eğilimleridir. Son yıllarda nanoteknolojiye olan ilgi artışıyla
beraber, nanotaneciklerin çimento sistemlerinde kullanımına yönelik çalışmalar dikkat
çekmektedir.
Bu projede yüksek miktarda doğal puzolan içeren çimentolara nanotanecik ilavesinin, farklı
doğal puzolan tiplerine de bağlı olarak, bu çimentoların hidratasyonu, hamur iç yapısı ve
özellikleri üzerindeki etkisi irdelenmiştir. Yirmi üç farklı doğal puzolanik malzemeden türlerini
en iyi şekilde yansıtacak şekilde seçilen bir zeolit, bir pomza ve bir volkanik tüfün her birisi,
ağırlıkça %50 oranında Portland çimentosuna ikame edilerek katkılı çimentolar hazırlanmıştır
(toplam 20 farklı çimento kompozisyonu). Bu çimentolara %1 ve %2 oranlarında nanoCaCO3 ve nano-SiO2 tanecikleri ilave edilerek, çimentoların hidratasyonu, hamurların iç
yapısı ve harç özellikleri incelenmiştir. Bu kapsamda izotermal kalorimetreyle hidratasyon
kinetiği, taze hamurların vizkositesi, termal analizle sertleşmiş hamurların kalsiyum hidroksit
ve bağlanmış su içerikleri, elektron mikroskobuyla iç yapı gözlemleri, harçların dayanımları
ve büzülme (rötre) ölçümleri gerçekleştirilmiştir.
Yapılan deneysel çalışmaların sonucunda nanotanecik ilavesinin, yüksek miktarda doğal
puzolan içeren çimentoların başta hidratasyon kinetiği (reaksiyon hızı ve açığa çıkan
hidratasyon ısısı) olmak üzere, iç yapısını mikro ve nano düzeyde modifiye ettiği tespit
edilmiştir. Çimento harçlarında %19’a varan oranlarda basınç dayanımı artışları ile
büzülmelerde belirgin düşüşler gözlenmiş ve bu durumun nanotanecik ilavesiyle hamur iç
yapısının gözenek boyut dağılımında meydana gelen yoğunlaşmayla ilgili olduğu
değerlendirilmiştir.
In the world cement industry is solely responsible for 7% of CO2 emitted into the atmosphere. The most effective way to reduce of CO2 emissions from the cement sector is increasing the utilization rate of mineral admixtures in cements. The greatest obstacle to this is some negative properties mineral blended cements such as delay in setting time, relatively lower strength performance and high shrinkage tendency. In recent years there is an increasing attention on nanotechnology applications and accordingly to use of nanoparticles in Portland cement systems. In this project, the effects of nanoparticle addition into high-volume natural pozzolan blended cements on their hydration, microstructure and properties, depending on the type of natural pozzolan were investigated experimentally. Among twenty three natural pozzolanic materials, one representative sample was selected from zeolite, pumice and volcanic tuff groups of materials. These selected pozzolans were used to obtain blended cements containing 50% natural pozzolans by mass (totally twenty different cements). 1% and 2%( by weight of blended cements) nano-CaCO3 ve nano-SiO2 particles were added to the cementious systems and the hydration, paste microstructure and mortar properties of the cements were determined. In this context, hydration kinetics by isothermal calorimetry, viscosity of fresh pastes, calcium hydroxide and bound water content of hardened cement pastes, microstructure observations by electron microcopy, strength and shrinkage of mortars of the cements were determined experimentally. As conclusions of experimental studies, it was determined that nanoparticle addition modifies hydration kinetics (reaction rate and heat of hydration) of the high-volume natural pozzolan blended cements and the microstructure of their hardened pastes. I was observed that there are increases in compressive strength up to 19% as well as some reductions in shrinkage values of mortars. These improvements were associated with the improvements in microstructure of hardened cement pastes including pore size distribution.
In the world cement industry is solely responsible for 7% of CO2 emitted into the atmosphere. The most effective way to reduce of CO2 emissions from the cement sector is increasing the utilization rate of mineral admixtures in cements. The greatest obstacle to this is some negative properties mineral blended cements such as delay in setting time, relatively lower strength performance and high shrinkage tendency. In recent years there is an increasing attention on nanotechnology applications and accordingly to use of nanoparticles in Portland cement systems. In this project, the effects of nanoparticle addition into high-volume natural pozzolan blended cements on their hydration, microstructure and properties, depending on the type of natural pozzolan were investigated experimentally. Among twenty three natural pozzolanic materials, one representative sample was selected from zeolite, pumice and volcanic tuff groups of materials. These selected pozzolans were used to obtain blended cements containing 50% natural pozzolans by mass (totally twenty different cements). 1% and 2%( by weight of blended cements) nano-CaCO3 ve nano-SiO2 particles were added to the cementious systems and the hydration, paste microstructure and mortar properties of the cements were determined. In this context, hydration kinetics by isothermal calorimetry, viscosity of fresh pastes, calcium hydroxide and bound water content of hardened cement pastes, microstructure observations by electron microcopy, strength and shrinkage of mortars of the cements were determined experimentally. As conclusions of experimental studies, it was determined that nanoparticle addition modifies hydration kinetics (reaction rate and heat of hydration) of the high-volume natural pozzolan blended cements and the microstructure of their hardened pastes. I was observed that there are increases in compressive strength up to 19% as well as some reductions in shrinkage values of mortars. These improvements were associated with the improvements in microstructure of hardened cement pastes including pore size distribution.
Description
Keywords
Çimento, Doğal puzolan, İç yapı, Nanoteknoloji, Nanotanecik, Cement, Microstructure, Nanoparticle, Nanotechnology, Natural pozzolan
Turkish CoHE Thesis Center URL
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
1
End Page
178