Dynamic soil characterization and site response estimation for Erbaa, Tokat (Turkey)
Loading...
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
SPRINGERONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, NY 10004, UNITED STATES
Abstract
Site amplification is one of the most important factors controlling damage in urban areas through strong earthquakes. Local site effects play an important role in earthquake-resistant design and should be considered for site response analyses. In this study, ground response analyses in Erbaa, Turkey, a settlement in the North Anatolian Fault Zone, using one-dimensional equivalent linear analysis and empirical approaches based on shear wave velocity profiles are evaluated and compared. The ground response analyses were performed with consideration of shear wave velocity, and modulus reduction and damping behavior for different confining pressure and plasticity index-dependent models. The results of ground response analyses and amplification values from empirical equations using shear wave velocity are illustrated in terms of amplification and predominant period maps of the seismically active Erbaa settlement area. The comparison has been made in these produced maps of the study area in order to evaluate different site response analyses.
Description
This work has been supported by the Scientific and Technical Research Council of Turkey (TUBITAK) (TUBITAK-CAYDAG No: 107Y068), the Research Foundation of Middle East Technical University (BAP No: 2009-03-09-01) and the Research Foundation of the Prime Ministry State Planning Organization (DPT No: CUBAP M-359/DPT 2006 K-120220). The authors gratefully acknowledge Prof. Dr. Orhan Tatar from Cumhuriyet University for his support during the DPT project. The Fulbright program gave the opportunity to make this research mutually and internationally possible in USA. The authors would like to thank the anonymous reviewers for their comments.
S
Keywords
Map, Ground response analysis, Soil amplification, Erbaa, Turkey
Turkish CoHE Thesis Center URL
Citation
WoS Q
Scopus Q
Source
Volume
Volume 82 Issue 3 Page 1833-1868