Classification of Breast Cancer Molecular Subtypes with Grouping-Scoring-Modeling Approach that Incorporates Disease-Disease Association Information

dc.contributor.author Qumsiyeh, Emma
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.author Yousef, Malik
dc.contributor.authorID 0000-0002-2272-6270 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Bakir-Gungor, Burcu
dc.date.accessioned 2025-05-09T06:46:54Z
dc.date.available 2025-05-09T06:46:54Z
dc.date.issued 2024 en_US
dc.description.abstract This study uses modern sequencing technology and large biological databases to investigate the molecular intricacies of complicated diseases like cancer. Using gene expression databases and biomarkers, the research aims to improve breast cancer molecular subtype identification for better patient outcomes. Using BRCA LumAB_ Her2Basal dataset, this study compares an integrative machine learning-based strategy (GediNET) to traditional feature selection approaches across machine learning classifiers. GediNET excels at uncovering crucial disease-disease connections and potential biomarkers using the Grouping-Scoring-Modeling (GSM) approach, which favors gene groupings above individual genes. Our comparative analysis highlights GediNET's exceptional performance, notably in terms of accuracy and Area Under the Curve metrics, underscoring its effectiveness in uncovering the genetic intricacies of breast cancer. GediNET's promise to improve disease classification and biomarker identification by improving biological mechanism understanding goes beyond exceeding traditional approaches. The work shows that GediNET's integrative method can promote bioinformatics research by identifying the most informative genes associated with certain diseases, enabling focused and customized medicine. en_US
dc.identifier.endpage 4 en_US
dc.identifier.isbn 979-8-3503-8897-8979-8-3503-8896-1
dc.identifier.issn 2165-0608
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1109/SIU61531.2024.10601041
dc.identifier.uri https://hdl.handle.net/20.500.12573/2532
dc.language.iso eng en_US
dc.publisher IEEE Xplore en_US
dc.relation.isversionof 10.1109/SIU61531.2024.10601041 en_US
dc.relation.journal 2024 32nd Signal Processing and Communications Applications Conference (SIU)2024 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bioinformatics en_US
dc.subject Integrative approach en_US
dc.subject Feature selection methods en_US
dc.subject Grouping-scoring-modeling (g-s-m) en_US
dc.subject Disease-disease associations en_US
dc.subject Biomarker discovery en_US
dc.subject Machine learning en_US
dc.title Classification of Breast Cancer Molecular Subtypes with Grouping-Scoring-Modeling Approach that Incorporates Disease-Disease Association Information en_US
dc.type other en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Classification_of_Breast_Cancer_Molecular_Subtypes_with_Grouping-Scoring-Modeling_Approach_that_Incorporates_Disease-Disease_Association_Information.pdf
Size:
271.15 KB
Format:
Adobe Portable Document Format
Description:
Bildiri Kağıdı

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: