CilioGenics: an integrated method and database for predicting novel ciliary genes

dc.contributor.author Pir, Mustafa Samet
dc.contributor.author Begar, Efe
dc.contributor.author Yenisert, Ferhan
dc.contributor.author Demirci, Hasan C.
dc.contributor.author Korkmaz, Mustafa E.
dc.contributor.author Karaman, Asli
dc.contributor.author Tsiropoulou, Sofia
dc.contributor.author Firat-Karalar, Elif Nur
dc.contributor.author Blacque, Oliver E.
dc.contributor.author Oner, Sukru S.
dc.contributor.author Doluca, Osman
dc.contributor.author Cevik, Sebiha
dc.contributor.author Kaplan, Oktay Ismail
dc.contributor.authorID 0000-0002-4645-7626 en_US
dc.contributor.authorID 0000-0002-0935-1929 en_US
dc.contributor.authorID 0000-0002-8733-0920 en_US
dc.contributor.department AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü en_US
dc.contributor.institutionauthor Pir, Mustafa Samet
dc.contributor.institutionauthor Yenisert, Ferhan
dc.contributor.institutionauthor Demirci, Hasan C.
dc.contributor.institutionauthor Korkmaz, Mustafa E.
dc.contributor.institutionauthor Cevik, Sebiha
dc.contributor.institutionauthor Kaplan, Oktay Ismail
dc.date.accessioned 2024-08-20T08:46:47Z
dc.date.available 2024-08-20T08:46:47Z
dc.date.issued 2024 en_US
dc.description.abstract Uncovering the full list of human ciliary genes holds enormous promise for the diagnosis of cilia-related human diseases, collectively known as ciliopathies. Currently, genetic diagnoses of many ciliopathies remain incomplete (1–3). While various independent approaches theoretically have the potential to reveal the entire list of ciliary genes, approximately 30% of the genes on the ciliary gene list still stand as ciliary candidates (4,5). These methods, however, have mainly relied on a single strategy to uncover ciliary candidate genes, making the categorization challenging due to variations in quality and distinct capabilities demonstrated by different methodologies. Here, we develop a method called CilioGenics that combines several methodologies (single-cell RNA sequencing, protein-protein interactions (PPIs), comparative genomics, transcription factor (TF) network analysis, and text mining) to predict the ciliary capacity of each human gene. Our combined approach provides a CilioGenics score for every human gene that represents the probability that it will become a ciliary gene. Compared to methods that rely on a single method, CilioGenics performs better in its capacity to predict ciliary genes. Our top 500 gene list includes 258 new ciliary candidates, with 31 validated experimentally by us and others. Users may explore the whole list of human genes and CilioGenics scores on the CilioGenics database (https://ciliogenics.com /). en_US
dc.identifier.endpage 8145 en_US
dc.identifier.issn 03051048
dc.identifier.issue 14 en_US
dc.identifier.startpage 8127 en_US
dc.identifier.uri https://doi.org/10.1093/nar/gkae554
dc.identifier.uri https://hdl.handle.net/20.500.12573/2336
dc.identifier.volume 52 en_US
dc.language.iso eng en_US
dc.publisher Oxford University Press en_US
dc.relation.isversionof 10.1093/nar/gkae554 en_US
dc.relation.journal Nucleic Acids Research en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title CilioGenics: an integrated method and database for predicting novel ciliary genes en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gkae554.pdf
Size:
2.33 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: