TextNetTopics-SFTS-SBTS: TextNetTopics Scoring Approaches Based Sequential Forward and Backward

dc.contributor.author Voskergian, Daniel
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.author Yousef, Malik
dc.contributor.authorID 0009-0005-7544-9210 en_US
dc.contributor.authorID 0000-0002-2272-6270 en_US
dc.contributor.authorID 0000-0001-8780-6303 en_US
dc.contributor.department AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü en_US
dc.contributor.institutionauthor Bakir-Gungor, Burcu
dc.date.accessioned 2025-06-17T07:14:13Z
dc.date.available 2025-06-17T07:14:13Z
dc.date.issued 2024 en_US
dc.description.abstract TextNetTopics is a text classification-based topic modeling approach that performs topic selection rather than word selection to train a machine learning algorithm. However, one main limitation of TextNetTopics is that its scoring component (the S component) assesses each topic independently and ranks them accordingly, neglecting the potential relationship between topics. In order to address this limitation and improve the classification performance, this study introduces an enhancement to TextNetTopics. TextNetTopics-SFTS-SBTS integrates two novel scoring approaches: Sequential Forward Topic Scoring (SFTS) and Sequential Backward Topic Scoring (SBTS), which consider topic interactions by assessing sets of topics simultaneously. This integration aims to streamline the topic selection process and enhance classifier efficiency for text classification. The results obtained across three datasets offer valuable insights into the context-dependent effectiveness of the new scoring mechanisms across diverse datasets and varying numbers of topics involved in the analysis. en_US
dc.identifier.endpage 355 en_US
dc.identifier.isbn 978-3-031-64635-5978-3-031-64636-2
dc.identifier.issn 2366-6323
dc.identifier.issn 1611-3349
dc.identifier.startpage 343 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-64636-2_26
dc.identifier.uri https://hdl.handle.net/20.500.12573/2535
dc.identifier.volume 14849 en_US
dc.language.iso eng en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.isversionof 10.1007/978-3-031-64636-2_26 en_US
dc.relation.journal BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, IWBBIO 2024 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Topic modeling en_US
dc.subject Topic selection en_US
dc.subject Text classification en_US
dc.subject Machine learning en_US
dc.title TextNetTopics-SFTS-SBTS: TextNetTopics Scoring Approaches Based Sequential Forward and Backward en_US
dc.type other en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: