Expanding Label Sets for Graph Convolutional Networks
| dc.contributor.author | Coskun, Mustafa | |
| dc.contributor.author | Grama, Ananth | |
| dc.contributor.author | Bakir-Gungor, Burcu | |
| dc.contributor.author | Koyuturk, Mehmet | |
| dc.date.accessioned | 2025-09-25T10:46:53Z | |
| dc.date.available | 2025-09-25T10:46:53Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | In recent years, Graph Convolutional Networks (GCNs) and their variants have been widely utilized in learning tasks that involve graphs. These tasks include recommendation systems, node classification, among many others. In node classification problem, the input is a graph in which the edges represent the association between pairs of nodes, multi-dimensional feature vectors are associated with the nodes, and some of the nodes in the graph have "known" labels. The objective is to predict the labels of the nodes that are not labeled, using the nodes' features, in conjunction with graph topology. While GCNs have been successfully applied to this problem, the caveats that they inherit from traditional deep learning models pose significant challenges to broad utilization of GCNs in node classification. One such caveat is that training a GCN requires a large number of labeled training instances, which is often not the case in realistic settings. To remedy this requirement, state-of-the-art methods leverage network diffusion-based approaches to propagate labels across the network before training GCNs. However, these approaches ignore the tendency of the network diffusion methods in biasing proximity with centrality, resulting in the propagation of labels to the nodes that are well-connected in the graph. To address this problem, here we present an alternate approach, namely LExiCoL, which extrapolates node labels in GCNs in the following three steps: (i) clustering of the network to identify communities, (ii) use of network diffusion algorithms to quantify the proximity of each node to the communities, thereby obtaining a low-dimensional topological profile for each node, (iii) comparing these topological profiles to identify nodes that are most similar to the labeled nodes. Testing on three large-scale real-world networks, we systematically evaluate the performance of the proposed algorithm and show that our approach outperforms existing methods for wide ranges of parameter values. | en_US |
| dc.identifier.doi | 10.1007/978-3-031-82427-2_9 | |
| dc.identifier.isbn | 9783031824296 | |
| dc.identifier.isbn | 9783031824272 | |
| dc.identifier.isbn | 9783031824265 | |
| dc.identifier.issn | 1860-949X | |
| dc.identifier.issn | 1860-9503 | |
| dc.identifier.scopus | 2-s2.0-105003131353 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-82427-2_9 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3822 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer International Publishing AG | en_US |
| dc.relation.ispartof | Studies in Computational Intelligence | en_US |
| dc.relation.ispartofseries | Studies in Computational Intelligence | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Graph Neural Network | en_US |
| dc.subject | Label Expansion | en_US |
| dc.subject | Label Propagation | en_US |
| dc.title | Expanding Label Sets for Graph Convolutional Networks | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57189031203 | |
| gdc.author.scopusid | 7003928712 | |
| gdc.author.scopusid | 25932029800 | |
| gdc.author.scopusid | 8897820600 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Coskun, Mustafa] Ankara Univ, Artificial Intelligence & Data Engn, Ankara, Turkiye; [Grama, Ananth] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47906 USA; [Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye+; [Koyuturk, Mehmet] Case Western Reserve Univ, Dept Comp & Data Sci, Cleveland, OH 44106 USA | en_US |
| gdc.description.endpage | 112 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 101 | en_US |
| gdc.description.volume | 1187 | en_US |
| gdc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4409330001 | |
| gdc.identifier.wos | WOS:001489044900009 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.7494755E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.15 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Güngör, Burcu | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isAuthorOfPublication.latestForDiscovery | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
