Expanding Label Sets for Graph Convolutional Networks

dc.contributor.author Coskun, Mustafa
dc.contributor.author Grama, Ananth
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.author Koyuturk, Mehmet
dc.date.accessioned 2025-09-25T10:46:53Z
dc.date.available 2025-09-25T10:46:53Z
dc.date.issued 2025
dc.description.abstract In recent years, Graph Convolutional Networks (GCNs) and their variants have been widely utilized in learning tasks that involve graphs. These tasks include recommendation systems, node classification, among many others. In node classification problem, the input is a graph in which the edges represent the association between pairs of nodes, multi-dimensional feature vectors are associated with the nodes, and some of the nodes in the graph have "known" labels. The objective is to predict the labels of the nodes that are not labeled, using the nodes' features, in conjunction with graph topology. While GCNs have been successfully applied to this problem, the caveats that they inherit from traditional deep learning models pose significant challenges to broad utilization of GCNs in node classification. One such caveat is that training a GCN requires a large number of labeled training instances, which is often not the case in realistic settings. To remedy this requirement, state-of-the-art methods leverage network diffusion-based approaches to propagate labels across the network before training GCNs. However, these approaches ignore the tendency of the network diffusion methods in biasing proximity with centrality, resulting in the propagation of labels to the nodes that are well-connected in the graph. To address this problem, here we present an alternate approach, namely LExiCoL, which extrapolates node labels in GCNs in the following three steps: (i) clustering of the network to identify communities, (ii) use of network diffusion algorithms to quantify the proximity of each node to the communities, thereby obtaining a low-dimensional topological profile for each node, (iii) comparing these topological profiles to identify nodes that are most similar to the labeled nodes. Testing on three large-scale real-world networks, we systematically evaluate the performance of the proposed algorithm and show that our approach outperforms existing methods for wide ranges of parameter values. en_US
dc.identifier.doi 10.1007/978-3-031-82427-2_9
dc.identifier.isbn 9783031824296
dc.identifier.isbn 9783031824272
dc.identifier.isbn 9783031824265
dc.identifier.issn 1860-949X
dc.identifier.issn 1860-9503
dc.identifier.scopus 2-s2.0-105003131353
dc.identifier.uri https://doi.org/10.1007/978-3-031-82427-2_9
dc.identifier.uri https://hdl.handle.net/20.500.12573/3822
dc.language.iso en en_US
dc.publisher Springer International Publishing AG en_US
dc.relation.ispartof Studies in Computational Intelligence en_US
dc.relation.ispartofseries Studies in Computational Intelligence
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Graph Neural Network en_US
dc.subject Label Expansion en_US
dc.subject Label Propagation en_US
dc.title Expanding Label Sets for Graph Convolutional Networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 57189031203
gdc.author.scopusid 7003928712
gdc.author.scopusid 25932029800
gdc.author.scopusid 8897820600
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Coskun, Mustafa] Ankara Univ, Artificial Intelligence & Data Engn, Ankara, Turkiye; [Grama, Ananth] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47906 USA; [Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye+; [Koyuturk, Mehmet] Case Western Reserve Univ, Dept Comp & Data Sci, Cleveland, OH 44106 USA en_US
gdc.description.endpage 112 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 101 en_US
gdc.description.volume 1187 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4409330001
gdc.identifier.wos WOS:001489044900009
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.15
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 0
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files