Expanding Label Sets for Graph Convolutional Networks

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer International Publishing AG

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In recent years, Graph Convolutional Networks (GCNs) and their variants have been widely utilized in learning tasks that involve graphs. These tasks include recommendation systems, node classification, among many others. In node classification problem, the input is a graph in which the edges represent the association between pairs of nodes, multi-dimensional feature vectors are associated with the nodes, and some of the nodes in the graph have "known" labels. The objective is to predict the labels of the nodes that are not labeled, using the nodes' features, in conjunction with graph topology. While GCNs have been successfully applied to this problem, the caveats that they inherit from traditional deep learning models pose significant challenges to broad utilization of GCNs in node classification. One such caveat is that training a GCN requires a large number of labeled training instances, which is often not the case in realistic settings. To remedy this requirement, state-of-the-art methods leverage network diffusion-based approaches to propagate labels across the network before training GCNs. However, these approaches ignore the tendency of the network diffusion methods in biasing proximity with centrality, resulting in the propagation of labels to the nodes that are well-connected in the graph. To address this problem, here we present an alternate approach, namely LExiCoL, which extrapolates node labels in GCNs in the following three steps: (i) clustering of the network to identify communities, (ii) use of network diffusion algorithms to quantify the proximity of each node to the communities, thereby obtaining a low-dimensional topological profile for each node, (iii) comparing these topological profiles to identify nodes that are most similar to the labeled nodes. Testing on three large-scale real-world networks, we systematically evaluate the performance of the proposed algorithm and show that our approach outperforms existing methods for wide ranges of parameter values.

Description

Keywords

Graph Neural Network, Label Expansion, Label Propagation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Studies in Computational Intelligence

Volume

1187

Issue

Start Page

101

End Page

112
PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 4

Page Views

2

checked on Feb 03, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals