Synchrosqueezing Transform Based Feature Extraction From EEG Signals for Emotional State Prediction

dc.contributor.author Ozel, Pinar
dc.contributor.author Akan, Aydin
dc.contributor.author Yilmaz, Bulent
dc.date.accessioned 2025-09-25T10:58:22Z
dc.date.available 2025-09-25T10:58:22Z
dc.date.issued 2019
dc.description Yilmaz, Bulent/0000-0003-2954-1217; Akan, Aydin/0000-0001-8894-5794; Ozel, Pinar/0000-0002-9688-6293; en_US
dc.description.abstract This paper presents a novel method for emotion recognition based on time-frequency analysis using multivariate synchrosqueezing transform (MSST) of multichannel electroencephalography (EEG) signals. With the advancements of the multichannel sensor applications, the need for multivariate algorithms has become obvious for extracting features that stem from multichannel dependency in addition to mono-channel features. In order to model the joint oscillatory structure of these multichannel signals, MSST has recently been proposed. It uses the concepts of joint instantaneous frequency and bandwidth. Electrophysiological data processing mostly requires joint time-frequency analysis in addition to both time and frequency analysis separately. The short-time Fourier transform (STFT) and wavelet transform (WT) are the main approaches utilized in time-frequency analysis. In this paper, the feasibility and performance of multivariate wavelet-based synchrosqueezing algorithm was demonstrated on EEG signals obtained from publically available DEAP database by comparing with its univariate version. Eight emotional states were considered by combining arousal-valence and dominance dimensions. Using linear support vector machines (SVM) as a classifier, MSST and its univariate version resulted in the highest prediction accuracy rates of (9) over tilde3% among all emotional states. (C) 2019 Elsevier Ltd. All rights reserved. en_US
dc.description.sponsorship Izmir Katip Celebi University Scientific Research Projects Coordination Unit [2017-ONAP-MUMF-0002] en_US
dc.description.sponsorship Aydin Akan was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Project number 2017-ONAP-MUMF-0002. en_US
dc.identifier.doi 10.1016/j.bspc.2019.04.023
dc.identifier.issn 1746-8094
dc.identifier.issn 1746-8108
dc.identifier.scopus 2-s2.0-85064542434
dc.identifier.uri https://doi.org/10.1016/j.bspc.2019.04.023
dc.identifier.uri https://hdl.handle.net/20.500.12573/4725
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.ispartof Biomedical Signal Processing and Control en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Emotion Recognition en_US
dc.subject Electroencephalography en_US
dc.subject Synchrosqueezing Transform en_US
dc.subject Multivariate Synchrosqueezing Transform en_US
dc.subject VAD Model en_US
dc.title Synchrosqueezing Transform Based Feature Extraction From EEG Signals for Emotional State Prediction en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yilmaz, Bulent/0000-0003-2954-1217
gdc.author.id Akan, Aydin/0000-0001-8894-5794
gdc.author.id Ozel, Pinar/0000-0002-9688-6293
gdc.author.scopusid 24544550200
gdc.author.scopusid 35617283100
gdc.author.scopusid 57189925966
gdc.author.wosid Özel, Pınar/Afh-4560-2022
gdc.author.wosid Yilmaz, Bulent/Juz-1320-2023
gdc.author.wosid Akan, Aydin/P-3068-2019
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Ozel, Pinar] Nevsehir Haci Bektas Veli Univ, Elect Elect Engn Dept, Nevsehir, Turkey; [Akan, Aydin] Izmir Katip Celebi Univ, Biomed Engn Dept, Izmir, Turkey; [Yilmaz, Bulent] Abdullah Gul Univ, Elect Elect Engn Dept, Kayseri, Turkey en_US
gdc.description.endpage 161 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 152 en_US
gdc.description.volume 52 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2942441362
gdc.identifier.wos WOS:000473381100016
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 34.0
gdc.oaire.influence 5.6150564E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.4521542E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 5.49390239
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 54
gdc.plumx.mendeley 78
gdc.plumx.scopuscites 67
gdc.scopus.citedcount 67
gdc.wos.citedcount 55
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files