Synchrosqueezing Transform Based Feature Extraction From EEG Signals for Emotional State Prediction
No Thumbnail Available
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Sci Ltd
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
This paper presents a novel method for emotion recognition based on time-frequency analysis using multivariate synchrosqueezing transform (MSST) of multichannel electroencephalography (EEG) signals. With the advancements of the multichannel sensor applications, the need for multivariate algorithms has become obvious for extracting features that stem from multichannel dependency in addition to mono-channel features. In order to model the joint oscillatory structure of these multichannel signals, MSST has recently been proposed. It uses the concepts of joint instantaneous frequency and bandwidth. Electrophysiological data processing mostly requires joint time-frequency analysis in addition to both time and frequency analysis separately. The short-time Fourier transform (STFT) and wavelet transform (WT) are the main approaches utilized in time-frequency analysis. In this paper, the feasibility and performance of multivariate wavelet-based synchrosqueezing algorithm was demonstrated on EEG signals obtained from publically available DEAP database by comparing with its univariate version. Eight emotional states were considered by combining arousal-valence and dominance dimensions. Using linear support vector machines (SVM) as a classifier, MSST and its univariate version resulted in the highest prediction accuracy rates of (9) over tilde3% among all emotional states. (C) 2019 Elsevier Ltd. All rights reserved.
Description
Yilmaz, Bulent/0000-0003-2954-1217; Akan, Aydin/0000-0001-8894-5794; Ozel, Pinar/0000-0002-9688-6293;
Keywords
Emotion Recognition, Electroencephalography, Synchrosqueezing Transform, Multivariate Synchrosqueezing Transform, VAD Model
Turkish CoHE Thesis Center URL
Fields of Science
0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Citation
WoS Q
Q2
Scopus Q
Q1

OpenCitations Citation Count
54
Source
Biomedical Signal Processing and Control
Volume
52
Issue
Start Page
152
End Page
161
PlumX Metrics
Citations
Scopus : 67
Captures
Mendeley Readers : 78
Google Scholar™

OpenAlex FWCI
5.49390239
Sustainable Development Goals
13
CLIMATE ACTION

17
PARTNERSHIPS FOR THE GOALS


