Electricity Load Forecasting Using Deep Learning and Novel Hybrid Models

dc.contributor.author Sutcu, Muhammed
dc.contributor.author Şahi̇n, Kübra Nur
dc.contributor.author Koloğlu, Yunus
dc.contributor.author Çelikel, Mevlüt Emirhan
dc.contributor.author Gulbahar, Ibrahim Tümay
dc.date.accessioned 2025-09-25T10:45:53Z
dc.date.available 2025-09-25T10:45:53Z
dc.date.issued 2022
dc.description.abstract Load forecasting is an essential task which is executed by electricity retail companies. By predicting the demand accurately, companies can prevent waste of resources and blackouts. Load forecasting directly affect the financial of the company and the stability of the Turkish Electricity Market. This study is conducted with an electricity retail company, and main focus of the study is to build accurate models for load. Datasets with novel features are preprocessed, then deep learning models are built in order to achieve high accuracy for these problems. Furthermore, a novel method for solving regression problems with classification approach (discretization) is developed for this study. In order to obtain more robust model, an ensemble model is developed and the success of individual models are evaluated in comparison to each other. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.16984/saufenbilder.982639
dc.identifier.issn 1301-4048
dc.identifier.issn 2147-835X
dc.identifier.scopus 2-s2.0-85185857868
dc.identifier.uri https://doi.org/10.16984/saufenbilder.982639
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/508524/electricity-load-forecasting-using-deep-learning-and-novel-hybrid-models
dc.identifier.uri https://hdl.handle.net/20.500.12573/3730
dc.language.iso en en_US
dc.publisher Sakarya University en_US
dc.relation.ispartof Sakarya University Journal of Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Load Forecasting en_US
dc.subject Regression By Classification en_US
dc.title Electricity Load Forecasting Using Deep Learning and Novel Hybrid Models en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57203285174
gdc.author.scopusid 58963871100
gdc.author.scopusid 57219542902
gdc.author.scopusid 59561452400
gdc.author.scopusid 57202958395
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Sutcu] Muhammed, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Şahi̇n] Kübra Nur, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Koloğlu] Yunus, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Çelikel] Mevlüt Emirhan, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Gulbahar] Ibrahim Tümay, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey en_US
gdc.description.endpage 104 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 91 en_US
gdc.description.volume 26 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4205449906
gdc.identifier.trdizinid 508524
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 72
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8523297E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Endüstri Mühendisliği
gdc.oaire.keywords Load forecasting
gdc.oaire.keywords load forecasting
gdc.oaire.keywords deep learning
gdc.oaire.keywords regression by classification
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Load forecasting;deep learning;regression by classification
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Industrial Engineering
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords QD1-999
gdc.oaire.popularity 4.9084976E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.views 200
gdc.openalex.collaboration National
gdc.openalex.fwci 0.43058688
gdc.openalex.normalizedpercentile 0.55
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Şahin, Kübra Nur
gdc.virtual.author Gülbahar, İbrahim Tümay
gdc.virtual.author Sütçü, Muhammed
relation.isAuthorOfPublication bf5bfe5d-eced-46ed-949d-f76af472b4a7
relation.isAuthorOfPublication ff0a4d2e-4106-4d9b-bf59-152448b4d0ec
relation.isAuthorOfPublication 346bb5cc-f5cb-4f40-bd6f-995436a96d63
relation.isAuthorOfPublication.latestForDiscovery bf5bfe5d-eced-46ed-949d-f76af472b4a7
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 02408e76-5684-4dd8-94c0-04f99d5fd588
relation.isOrgUnitOfPublication 41a7d786-5b6d-4171-908b-e188c2ec347c
relation.isOrgUnitOfPublication bfbb34b6-53fb-4fb8-89e7-aa2f0299e86b
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files