Electricity Load Forecasting Using Deep Learning and Novel Hybrid Models
| dc.contributor.author | Sutcu, Muhammed | |
| dc.contributor.author | Şahi̇n, Kübra Nur | |
| dc.contributor.author | Koloğlu, Yunus | |
| dc.contributor.author | Çelikel, Mevlüt Emirhan | |
| dc.contributor.author | Gulbahar, Ibrahim Tümay | |
| dc.date.accessioned | 2025-09-25T10:45:53Z | |
| dc.date.available | 2025-09-25T10:45:53Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Load forecasting is an essential task which is executed by electricity retail companies. By predicting the demand accurately, companies can prevent waste of resources and blackouts. Load forecasting directly affect the financial of the company and the stability of the Turkish Electricity Market. This study is conducted with an electricity retail company, and main focus of the study is to build accurate models for load. Datasets with novel features are preprocessed, then deep learning models are built in order to achieve high accuracy for these problems. Furthermore, a novel method for solving regression problems with classification approach (discretization) is developed for this study. In order to obtain more robust model, an ensemble model is developed and the success of individual models are evaluated in comparison to each other. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.16984/saufenbilder.982639 | |
| dc.identifier.issn | 1301-4048 | |
| dc.identifier.issn | 2147-835X | |
| dc.identifier.scopus | 2-s2.0-85185857868 | |
| dc.identifier.uri | https://doi.org/10.16984/saufenbilder.982639 | |
| dc.identifier.uri | https://search.trdizin.gov.tr/en/yayin/detay/508524/electricity-load-forecasting-using-deep-learning-and-novel-hybrid-models | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3730 | |
| dc.language.iso | en | en_US |
| dc.publisher | Sakarya University | en_US |
| dc.relation.ispartof | Sakarya University Journal of Science | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Load Forecasting | en_US |
| dc.subject | Regression By Classification | en_US |
| dc.title | Electricity Load Forecasting Using Deep Learning and Novel Hybrid Models | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57203285174 | |
| gdc.author.scopusid | 58963871100 | |
| gdc.author.scopusid | 57219542902 | |
| gdc.author.scopusid | 59561452400 | |
| gdc.author.scopusid | 57202958395 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Sutcu] Muhammed, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Şahi̇n] Kübra Nur, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Koloğlu] Yunus, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Çelikel] Mevlüt Emirhan, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey; [Gulbahar] Ibrahim Tümay, Department of Industrial Engineering, Abdullah Gül Üniversitesi, Kayseri, Turkey | en_US |
| gdc.description.endpage | 104 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q4 | |
| gdc.description.startpage | 91 | en_US |
| gdc.description.volume | 26 | en_US |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4205449906 | |
| gdc.identifier.trdizinid | 508524 | |
| gdc.index.type | Scopus | |
| gdc.index.type | TR-Dizin | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.downloads | 72 | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 2.8523297E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Endüstri Mühendisliği | |
| gdc.oaire.keywords | Load forecasting | |
| gdc.oaire.keywords | load forecasting | |
| gdc.oaire.keywords | deep learning | |
| gdc.oaire.keywords | regression by classification | |
| gdc.oaire.keywords | Engineering (General). Civil engineering (General) | |
| gdc.oaire.keywords | Load forecasting;deep learning;regression by classification | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Industrial Engineering | |
| gdc.oaire.keywords | TA1-2040 | |
| gdc.oaire.keywords | QD1-999 | |
| gdc.oaire.popularity | 4.9084976E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.views | 200 | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.43058688 | |
| gdc.openalex.normalizedpercentile | 0.55 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 10 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Şahin, Kübra Nur | |
| gdc.virtual.author | Gülbahar, İbrahim Tümay | |
| gdc.virtual.author | Sütçü, Muhammed | |
| relation.isAuthorOfPublication | bf5bfe5d-eced-46ed-949d-f76af472b4a7 | |
| relation.isAuthorOfPublication | ff0a4d2e-4106-4d9b-bf59-152448b4d0ec | |
| relation.isAuthorOfPublication | 346bb5cc-f5cb-4f40-bd6f-995436a96d63 | |
| relation.isAuthorOfPublication.latestForDiscovery | bf5bfe5d-eced-46ed-949d-f76af472b4a7 | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 02408e76-5684-4dd8-94c0-04f99d5fd588 | |
| relation.isOrgUnitOfPublication | 41a7d786-5b6d-4171-908b-e188c2ec347c | |
| relation.isOrgUnitOfPublication | bfbb34b6-53fb-4fb8-89e7-aa2f0299e86b | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
