Temirel, Mikail

Loading...
Profile Picture
Name Variants
M Temirel
Temirel, Mikail
Job Title
Dr. Öğr. Üyesi
Email Address
mikail.temirel@agu.edu.tr
Main Affiliation
02.06. Makine Mühendisliği
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

2

Research Products
Documents

10

Citations

272

h-index

9

Documents

9

Citations

227

Scholarly Output

3

Articles

3

Views / Downloads

11/0

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

39

Scopus Citation Count

41

WoS h-index

2

Scopus h-index

2

Patents

0

Projects

0

WoS Citations per Publication

13.00

Scopus Citations per Publication

13.67

Open Access Source

2

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Advanced Healthcare Materials1
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi1
Journal of Functional Biomaterials1
Current Page: 1 / 1

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Computational Fluid Dynamics (CFD) Analysis of Bioprinting
    (Wiley, 2024) Fareez, Umar Naseef Mohamed; Naqvi, Syed Ali Arsal; Mahmud, Makame; Temirel, Mikail
    Regenerative medicine has evolved with the rise of tissue engineering due to advancements in healthcare and technology. In recent years, bioprinting has been an upcoming approach to traditional tissue engineering practices, through the fabrication of functional tissue by its layer-by-layer deposition process. This overcomes challenges such as irregular cell distribution and limited cell density, and it can potentially address organ shortages, increasing transplant options. Bioprinting fully functional organs is a long stretch but the advancement is rapidly growing due to its precision and compatibility with complex geometries. Computational Fluid Dynamics (CFD), a carestone of computer-aided engineering, has been instrumental in assisting bioprinting research and development by cutting costs and saving time. CFD optimizes bioprinting by testing parameters such as shear stress, diffusivity, and cell viability, reducing repetitive experiments and aiding in material selection and bioprinter nozzle design. This review discusses the current application of CFD in bioprinting and its potential to enhance the technology that can contribute to the evolution of regenerative medicine. Using computational fluid dynamics (CFD) allows the optimization of bioprinting by analyzing flow velocity, shear stress, and pressure distribution, which enhances the printability, nozzle design, and bioink formulations for tissue construction. CFD enhances bioink deposition and cell viability while reducing the need for repetitive experiments, curbing cost and time. Moreover, it enhances vascularization designs to mimic physiological conditions, thereby facilitating tissue development. image
  • Article
    Citation - WoS: 27
    Citation - Scopus: 27
    Shape Fidelity Evaluation of Alginate-Based Hydrogels Through Extrusion-Based Bioprinting
    (MDPI, 2022) Temirel, Mikail; Dabbagh, Sajjad Rahmani; Tasoglu, Savas
    Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young's modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality.
  • Article
    Computational Fluid Dynamics (CFD) Analysis of 3D Printer Nozzle Designs
    (2024) Hajili, Rasul; Temirel, Mikail
    Additive manufacturing, particularly 3D printing, has gained significant attention recently due to its flexibility, precision, and sustainability. Among the various 3D printing technologies, Fused Deposition Modeling (FDM) stands out as one of the most popular due to its affordability, ease of use, and print quality. However, a major drawback of FDM-based 3D printers is their relatively low print resolution. One of the key factors influencing print quality is the nozzle design, especially its geometry. As a result, numerous studies in literature have focused on improving 3D printing performance by optimizing nozzle design. In this study, we investigated the effects of nozzle geometry from a Computational Fluid Dynamics (CFD) perspective, examining three aspects: die angle, outlet size, and outlet shape. The CFD analysis revealed that the die angle primarily influences the shear stress within the nozzle, while the outlet size has a significant impact on velocity and pressure difference. The outlet shape affects shear stress, velocity, and pressure difference to a lesser extent than the die angle and size.