Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Title
Now showing 1 - 20 of 95
- Results Per Page
- Sort Options
Doctoral Thesis Akıllı Mikro-Şebekelerde Kontrol Stratejilerinin Geliştirilmesi(Abdullah Gül Üniversitesi Fen Bilimleri Enstitüsü, 2021) Yoldaş, Yeliz; Yoldaş, Yeliz; Önen, Ahmet; 0000-0002-9821-9339; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityThis thesis concerns the transformation of aged power systems to modern power systems that include microgrids with renewable energy sources and energy storage systems. The integration of renewable energy sources brings excellent opportunities to provide better reliability and efficiency. However, the uncertainty and intermittent nature of renewable energy sources may potentially degrade the stability and quality of the electrical grid. Therefore, the aim of this dissertation is to maintain the supply-demand balance in microgrids while minimizing the cost in real time operation. A microgrid energy management system that can optimize the dispatch of the controllable distributed energy resources in grid-connected mode of a pilot microgrid on a university campus in Malta was developed to achieve this goal. Three different methods were used in this study: mixed integer linear programming (MILP), MILP based rolling horizon control and Q-learning, Designing intelligent method for the real-time energy management of the stochastic and dynamic microgrid is the primary goal of this research. Moreover, the detailed mathematical models of the network model and of the technical model are considered for the economic and environmental operation of the microgrid system to solve the optimization problem under more real-world conditions. The objective is to minimize the total daily operation costs, which include the degradation cost of batteries, the cost of energy bought from the main grid, the fuel cost of the diesel generator, and the emission cost. The optimization problem is modeled as a finite Markov decision process (MDP) by combining network and technical constraints, and a Q-learning algorithm is adopted to solve the sequential decision subproblems. The proposed algorithm decomposes a multi-stage mixed-integer nonlinear programming (MINLP) problem into a series of single-stage problems so that each subproblem can be solved using Bellman's equation. To prove the effectiveness of the proposed algorithm, three different case studies are taken into consideration. A predictive control framework is also proposed to provide optimal operation with minimum cost. This method allows the consideration of operational cost values, demand with uncertainty, generation units' profiles with uncertainty, and constraints related to the network model and technical model. The stochastic and deterministic cases are conducted to validate the efficiency of the approach.Master Thesis Akıllı Mikroşebekeler için Voltaj Profillerinde Bulut Kaynaklı PV Etkisi(Abdullah Gül Üniversitesi, 2018) ÇAĞATAY KOÇER, MUSTAFA; Koçer, Mustafa Çağatay; Önen, Ahmet; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü; ÇAĞATAY KOÇER, MUSTAFA; 01. Abdullah Gül Universityİnsanlık tarihinde, elektrik enerjisinin icadının etkilediği kadar, herkesin yaşamını olumlu bir şekilde etkileyen başka bir buluş yoktur. Elektrik ile birlikte, medeniyetin yükselişi hız kazandı, endüstriyel teknolojiler gelişti ve bilimsel gelişmeler kendilerine daha uygun bir ortam buldu. Ancak, artan elektrik talebini karşılayabilmek için üretim maliyetlerinin düşürülmesi gerekiyordu. Bu doğrultuda, enerji sektörü ucuz elektrik üretimi için fosil yakıt bazlı çözümler kullandı. Ancak günümüzde, fosil yakıt kaynakları sınırlı oldukları için ve atmosferdeki sera gazı emisyonunu artırdıklarından, elektrik üretimi için daha temiz ve daha sürdürülebilir yöntemler kullanmaya yönelik bir eğilim oluştu. Bu trend, özellikle modern elektrik şebekeleri için, yenilenebilir enerji kaynaklarını (YEK) yeni bir çözüm olarak masaya getirmektedir. Bununla birlikte, YEK'lerin davranışları tahmin edilmesi zor ve çevresel etkenlere aşırı derecede bağımlı olduğu için, özellikle mikroşebekeler gibi alçak gerilim şebekelerinde, bu kaynakların şebekeye entegrasyonunda bazı ciddi sorunlarla karşılaşılmaktadır. Bu tezde, bulutların kaotik hareketleri ile sık sık kesintiye uğrayan güneş ışınlarından kaynaklanan, fotovoltaik güç üretimindeki dalgalanmaların, Malta College of Arts Science and Technology (MCAST) kampüsüne ait olan bir gerçek mikroşebeke sisteminin yük voltajı seviyeleri üzerine olan etkisi araştırılmıştır. Ek olarak, mikroşebekenin sağlıklı bir şekilde çalışmaya devam etmesini sağlamaktan sorumlu olan yardımcı kaynakların (batarya depolama sistemi ve dizel jeneratör) yük voltaj profillerine olan etkisi de verilmektedir. Yazar, gerekli simülasyonlar ve sistem tasarımları için MATLAB/Simulink platformunu kullanmıştır.Master Thesis Alfa Bandı Nöral Geri Besleme Kullanarak Kısa Dönem Hafıza Performansının İyileştirilmesi(Abdullah Gül Üniversitesi, 2018) GÖKŞİN, BARIŞ; Gökşin, Barış; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; GÖKŞİN, BARIŞ; 01. Abdullah Gül UniversityHafızanın yaşın ilerlemesi ile zayıflaması bireyler için önemli bir problemdir ve bu problemin Alzheimer'da olduğu gibi bilinen tatmin edici bir tıbbi tedavi yöntemi bulunmamaktadır. Beyin-bilgisayar arayüzü teknolojisindeki son gelişmeler bireylerin beyin aktivitesinin ölçülmesine olanak sağlamıştır, nöral geri bildirim de beyin bilgisayar arayüzünü kullanan metotlardan biridir. Nöral geribildirim metodunun psikolojik bozukluklar üzerine uygulanması hakkında birçok araştırma olmasına rağmen, kısa dönem hafıza performansı üzerine uygulamaları hakkında yapılmış sınırlı sayıda araştırma vardır. Bu tez kişilerin alfa bandı nöral geribildirim eğitimi ile kısa dönem hafızalarının geliştirilmesinin mümkün olup olmadığını araştırmaktadır. 11 sağlıklı erkek katılımcıdan kablosuz EEG cihazı ile EEG sinyalleri toplanmıştır. Nöral geri bildirim yöntemi alfa bandı gücünün gerçek zamanlı artırılması için kullanılmıştır. Nöral geribildirimin sağladığı kısa dönem hafıza performansındaki iyileşmenin ölçülmesi amacıyla 5 seanslık nöral geribildirim eğitimi öncesi ve sonrası 10 kelimeden oluşan ezber testi tüm katılımcılara uygulanmıştır. Sonuçlar nöral geribildirim seansları esnasında 11 kişiden 6'sının alfa bandı gücünü spektrumdaki diğer bantlara göre artırabildiğini göstermiştir. Fakat kısa dönem hafıza performansında belirgin bir gelişme olmamıştır. Sonuç olarak nöral geribildirimin katılımcıların zihinlerini bilinçli bir şekilde odaklayabilmesinde faydalı olduğu söylenebilir. Fakat nöral geribildirim eğitiminin kısa dönem hafızayı kesinlikle artırdığı veya alakasız olduğunu söylemek güçtür.Master Thesis Anahtarlamalı Relüktans Motorlarında Tork Dalgalanmasının Azaltılması için Uyarlanabilir Çevrimiçi Tork Paylaşım Fonksiyonu Geliştirilmesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Genç, Ufuk; Tekgün, Burak; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiElectrical machines play a crucial role in modern society by transforming electrical energy into mechanical energy and vice versa. These machines include various types of motors and generators, which are used in a wide range of applications such as electric vehicles, industrial automation, and renewable energy systems. One of the popular electrical machines is the switched reluctance machine (SRM), which is known for its high reliability and efficiency. The key advantages of the SRM include its simple structure, robustness, and low cost. The SRM does not require a permanent magnet or an excitation winding, making it an attractive option for high-volume, low-cost applications. Despite its advantages, the SRM also has some disadvantages that need to be considered. One of the main drawbacks of the SRM is being susceptible to torque ripple, which can result in vibration and noise. In order to overcome these disadvantages, advanced control methods have been developed for the SRM. One such control method is the torque sharing function, which distributes the load among the phases of the motor. This results in improved torque characteristics and reduced torque ripple. However, this control method also has some disadvantages, such as increased complexity and the need for more advanced sensors and controllers. Additionally, the torque sharing function may result in reduced efficiency, especially at high speeds. The purpose of this thesis study is to improve the torque ripple performance of SRM for a wide speed range through the proposed control approach. In conclusion, minimizing the torque ripple is a critical aspect of the operation of SRMs, and a range of control strategies and techniques can be used to achieve this goal. By reducing the torque ripple, SRMs can deliver improved efficiency, performance, and reliability, making them even more attractive for a wide range of applications.Doctoral Thesis Anormallik Tespiti için Veri Madenciliği(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Kaçmaz, Rukiye Nur; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityGastroentereloji uzmanları için kolon anormalliklerinin tespit edilmesi en zor görevlerden birisidir. Kolonoskopi herhangi bir anormalliği izlemek için kolondan video veya görüntüler kaydetmenin en yaygın yöntemidir. Bununla birlikte işlem sırasında elde edilen görüntü veya videolar, kolonoskopi probunun ya da kapsülün hızlı hareketinden kaynaklanan hareket gürültüsü, kapsülde ve probda ışık kaynağından kaynaklanan yansıma gürültüsü (YG), yetersiz veya aşırı aydınlatmadan kaynaklanan uygun olmayan kontrast gürültüsü, mide öz suyu, baloncuklar veya kalıntılar içermektedir. Bu tarz gürültüler içeren görüntülere bilgi taşımayan çerçeveler adı verilmektedir. Hastalık tespiti işlemi ise bilgi içeren olarak adlandırılan temiz görüntüler ile yürütülmektedir. İlk çalışmada tekstür tabanlı otomatik polip tespitinde YG'nin etkisini ve YG'yi ortadan kaldırmak için kullanılan görüntü enterpolasyonunun kullanımı araştırıldı. Bu amaçla, çeşitli boyutlarda sonradan YG eklenen ve interpolasyon uygulanan görüntülerden ve YG içermeyen görüntülerden çeşitli tekstür özellikleri elde edildi. Polipleri kolon arka planından ayırt etmek için, uygulanan en yakın komşular, bilineer ve bikübik interpolasyon yöntemlerinin, tekstür özellikleri ve sınıflandırma performansı açısından herhangi bir farklılığa neden olup olmadığı test edildi. İkinci çalışmada temel amaç, bilgi taşımayan çerçeveleri tespit etmede geleneksel makine öğrenmesi ve transfer öğrenme yaklaşımlarının performanslarının karşılaştırılmasıydı. Makine öğrenmesi bölümünde, gri seviye eş oluşum matrisi, gri seviye koşu uzunluğu matrisi, komşuluk gri ton farkı matrisi, odak ölçüm operatörleri ve basıklık, standart sapma ve çarpıklık olarak üç adet birinci derece istatistik kullanıldı. Sınıflandırma aşamasında rastgele orman, destek vektör makineleri ve karar ağacı yaklaşımları kullanılmıştır. Transfer öğrenme bölümünde derin sinir ağları olarak AlexNet, SqueezeNet, GoogleNet, ShuffleNet, ResNet-18, ResNet-50, NasNetMobile ve MobileNet tercih edildi. Son çalışma, bilgi taşıyan çerçevelerde Crohn's, ülseratif kolit, kanser ve polip gibi kolon anormalliklerinin saptanmasını içermiştir. Bu çalışmanın amacı, öncelikle sağlıklı çerçeveleri hastalıklılardan ayırmak ve hem geleneksel makine öğrenmesi hem de transfer öğrenme yaklaşımlarını kullanarak hastalık türlerini belirlemekti. İkinci çalışmada kullanılanlarla aynı tekstür özellikleri, sınıflandırma yaklaşımları ve transfer öğrenme yöntemleri kullanılmıştır.Doctoral Thesis Beyin-Bilgisayar Arayüzlerine Yönelik Riemann Geometrisi ile İleri Sinyal İşleme Yaklaşımı(2023) Altındiş, Fatih; Yılmaz, Bülent; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiBu tezde, EEG tabanlı beyin-bilgisayar arayüzlerinde (BBA) Riemann geometrisine dayalı öğrenme transferi kullanımına dayalı gelişmeleri incelemekteyiz. Seçilen EEG sinyal epoklarının sınıflandırma performansına katkısını göstermek adına kayan pencere yaklaşımı geliştirdik. Bunun yanında, sinyal işleme adımlarına filtre bankasının eklenmesinin sınıflandırma doğruluğunu daha fazla arttırdığını gözlemledik. Açık veristelerinden motor-niyet dalgaları içeren verisetlerini kullanarak, klasik Tanjant Uzay Haritalama yöntemine kıyasla sınıflandırma performanısı ortalama % 7 iyileştirdik. Çalışmanın en önemli çıktısı, 'grup öğrenmesi' adlı yeni bir transfer öğrenme yaklaşımı ve bu yaklaşımın uzantısı olan, 'hızlı hizalama' yöntemidir. Grup öğrenmesi, klinik olmayan BBA açık verisetlerinde sınıflandırma performansından ödün vermeden çoklu alan uyarlaması yapmaktadır. Hızlı hizalama, alan uyarlamasını daha önce kullanılmamış yeni veriler için kullanmayı sağlamaktadır. Önerilen grup hizalama algoritması (GALIA), farklı kişilerden ve farklı oturumlardan alınan EEG verileri ile test edilmiştir. Sınıflandırma performansı ve hesaplama maliyeti için optimal hiper-parametre değerleri incelenmiştir. Çalışma, birçok kişiden kayıt edilen verileri kullanarak tek bir makine öğrenimi modelinin oluşturulmasını ve eğitilmiş modelin yeniden eğitilmesine gerek kalmadan yeni veriler üzerinde kullanılabileceğini göstermiştir. Bulgular, birçok kişi üzerinde öğrenme transferi gerçekleştirebilen bütünsel bir sinyal işleme akışı sağlayarak güçlü, genelleştirilebilir, ve yüksek sınıflandırma performansına sahip BBA sistemleri tasarlanmasına olanak sağlamaktadır.Master Thesis Bilgisayar Ağlarında Anormal Durum Tespiti Yapan Öğrenme Yöntemlerinin Geliştirilmesi(Abdullah Gül Üniversitesi, 2018) MUKHANDI, HABIBU SHOMARI; Mukhandi, Habibu Shomari; Aydın, Zafer; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; MUKHANDI, HABIBU SHOMARI; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiMakine öğrenmesi, verilerdeki bilginin bir bilgisayar ya da makina tarafından otomatik olarak öğrenilmesi ve karşılaşılan yeni durumlarda anlamlı bilgi ya da davranışların üretilmesini amaçlar. Bir çok uygulama alanı bulunan makine öğrenmesi daha önce hiç karşılaşılmamış olan sıradışı durumların tespit edilmesi için de kullanılmaktadır. Bilgisayar ağlarındaki siber saldırılar, kredi kartı dolandırıcılığı ve internet sitelerinin linklerine yapılan çok sayıda sahte tıklamalar dünya genelinde ekonomileri ciddi oranda zarara uğratabilecek niteliktedir. Bu tezde üç farklı anormal durum tespiti problemi üzerinde çalışılmıştır: bilgisayar ağlarında saldırı tespiti, kredi kartı dolandırıcılığı tespiti ve internet sitelerdeki linklere sahte tıklama tespiti. Anormal durum tespiti için geliştirilen ve optimize edilen modeller arasında rastgele orman, en yakın komşu, destek vektör makinası, logistic regresyon, karar ağacı, AdaBoost, çantalama ve yığınlama gibi sınıflandırma yöntemleri bulunmaktadır. Yöntemlerin hiper-parametreleri eğitim kümelerinde yapılan çapraz doğrulama deneyleri ile optimize edilmiştir. Bir sonraki aşamada optimum hiper-parametre konfigürasyonları kullanılarak eğitilen modeler ile test verilerinde tahmin sonuçları hesaplanmıştır. Bu deneyler neticesinde genel doğruluk oranı ve F-measure skorlarında yüksek başarı elde edilmiştir. Geliştirilen yöntemler arasında en başarılı sonuçlar topluluk modelleri ile elde edilmiştir.Master Thesis Bilgisayar Algoritmalarının GPU ile Hızlandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Yalçın, Salih; Alkan, Gülay Yalçın; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 10. RektörlükTravelling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it involves in many computing problems such as networks, genome analysis, logistic etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem-solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from host device would reduce the performance in execution time. In this study, we present a methodology for compressing data to represent cities in the TSP so that we include more cities in GPU memory. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and show that our implementation presents 29% performance improvement compared to the state-of-the-art GPU implementation.Doctoral Thesis Biyoçipler için Mikro Biyomalzemelerin ve Hücrelerin Görüntü İşleme Yöntemleri ile Otomatik Olarak Sayılması ve Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Çelebi, Fatma; İçöz, Kutay; 0000-0001-7472-8297; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiQuantification of tumor cells is essential for early cancer detection and progression tracking. Multiple techniques have been devised to detect tumor cells. In addition to conventional laboratory instruments, several biochip-based techniques have been devised for this purpose. Our biochip design incorporates micron-sized immunomagnetic beads and micropad arrays, necessitating automated detection and quantification not only of cells but also of the micropads and immunomagnetic beads. The primary function of the biochip is to simultaneously acquire target cells with distinct antigens. As a readout technique for the biochip, this study devised a digital image processing-based method for quantifying leukemia cells, immunomagnetic beads, and micropads. Images were acquired on the chip using bright-field microscopy with image objectives of 20X and 40X. Conventional image processing methods, machine learning methods, and deep learning methods were used to analyze the images. To quantify targets in the images captured by a bright-field microscope, color- and size-based object recognition and machine learning-based methods were first implemented. Secondly, color- and size-based object detection and object segmentation methods were implemented to detect structures in bright-field optical microscope images acquired from the biochip. Third, segmentation of the minimal residual disease (MRD) using deep learning. Implemented biochip images comprised of leukemic cells, immunomagnetic beads, and micropads. Moreover, mesenchymal stem cells (MSCs) are stem cells with the capacity for multilineage differentiation and self-renewal. Estimating the proportion of senescent cells is therefore essential for clinical applications of MSCs. In this study, a self-supervised learning (SSL)-based method for segmenting and quantifying the density of cellular senescence was implemented, which can perform well despite the small size of the labeled dataset.Master Thesis Biyoinformatik Alanı için Blokzincir Tabanlı Veri Paylaşım Platformu(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Adanur, Beyhan; Güngör, Burcu; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiSon zamanlarda, panomik çalışmalar -omik verileri ile diğer veri türlerini birleştirerek, yeni ve uygulanabilir biyobelirteçleri belirlemeye çalışmaktadır. Bu bağlamda omik verilerinin doğru analizi için veri paylaşımının yanı sıra veri gizliliği ve sahipliği sorunlarını çözen, etik yönleri dikkate alan güvenli platformların geliştirilmesine ihtiyaç vardır. Bugünlerde blokzincir teknolojisi, farklı bir perspektiften bu sorunlara yönelik yeni bir çözüm sunduğu için genomik alanında büyük ilgi görmektedir. Bu tezde, verimli genomik veri paylaşımını sağlamak, genomik veriler üzerinde istatistiksel analiz ve benzeri işlemleri yapmak için blokzinciri, homomorfik şifreleme ve intel yazılım koruması uzantısına (SGX) dayanan, GenShare adlı hibrit bir platform önermekteyiz. Önerilen model, homomorfik şifreleme ve SGX kullanarak güvenlik gizliliği sorunlarını çözerken, diğer sorunları Hyperledger Fabric ve Ethereum ağlarının bir kombinasyonunu kullanarak çözmektedir. Bu çalışmada, GenShare modelinin ilk aşaması olan Hyperledger Fabric ağ kurulumu yapılmış ve farklı sayıda iş yükü ile ağın performansı test edilmiştir. Performans değerlendirmelerimizin sonucunda, GenShare modelinin veri toplama ve paylaşma sürecini hızlandıracağı, ve kullanıcalar için verimli bir platform olacağı sonucuna varılmıştır.Master Thesis Biyolojik Ağlarda Kesişen Kümelerin Görselleştirilmesi ve Topolojik Özelliklerine Göre Filtrelenmesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Bulut, Ümit; Güngör, Burcu Bakır; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityBilgisayar bilimleri ve veri işleme teknolojilerinin hızlı gelişimiyle beraber, biyoenformatik alanı, bu yüzyılın popülerliği artan disiplinlerarası çalışma alanlarından birisi haline gelmiştir. Bu tez çalışmasında, BioNetVis isimli yeni bir göreslleştirme aracı geliştirerek, biyoenformatik very analizine yeni bir perspektif getirmeyi amaçladık. Geliştirdiğimiz araç, keşisen kümeleri biyolojik ağlar, özellikle protein-protein etkileşim ağları üzerinde görselleştirme ve ağ topolojik özelliklerine göre filtreleme yeteneğine sahiptir. BioNetVis, verileri olabildiğince hızlı ve verimli bir şekilde işlemek için son teknoloji frameworkler ve programlama kütüphaneleri ile geliştirilmiştir. BioNetVis'in ana amacı kesişen biyolojik verileri, biyolojik ağlar üzerinde analiz etmeyi kolaylaştırmaktır. Sunulan araç, ilaçların yeniden konumlandırılması, kişiselleştirilmiş tıp, nadir hastalıkların teşhis ve tedavisi konularında çalışan araştırmacılara hizmet etmeyi amaçlar. Proje şu üç adımda gerçekleştirilmiştir. İlk olarak, biyolojik veri biyolojik ağa haritalanmış, ve back-end kısmı geliştirilmiştir. İkinci olarak, back-end kısmında işlenmiş veriler, kullanıcılar için kodlanan arayüz ile görselleştirilmiştir. Üçüncü olarak, front-end ve back-end kısımları birleştirilmiş ve araştırmacılar için kullanılabilir hale getirilmiştir. BioNetVis'i diğer ağlara ve diğer veri kümelerine kolayca uyarlanabilsin diye modüler olarak tasarladık. Böylece, BioNetVis diğer alanlarda kesişen veri kümelerinin ağda görsellenmesi, ve ağ topolojik özelliklerine göre filtrelenmesi amacıyla kullanılabilir. Son olarak, BioNetVis'in sunduğu işlevleri açıklamak için, bir kullanım uygulaması ile beraber sunduk. Anahtar kelimeler: Biyoenformatik, Veri Görsellenmesi, Kesişen Veri Kümeleri, İlaçların Yeniden Konumlandırılması, Kişiselleştirilmiş TıpMaster Thesis Biyomedikal Varlıklar Arasındaki İlişkilerin Biyomedikal Makaleler Aracılığıyla Keşfedilmesine Dair Bir Sistem Geliştirilmesi(2025) Altuner, Osman; Güngör, Burcu; Bakal, Mehmet Gökhan; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiGünümüz dünyasında dijitalleşme hızla yayılmaktadır. Bu yayılma, bir yandan hayatımızı kolaylaştırırken diğer yandan büyük miktarda dijital verinin analizi ve işlenmesi gibi yeni zorlukları da beraberinde getirmektedir. Bu durum özellikle akademik araştırmalar bağlamında belirgindir. Akademik araştırmalar, gelişmiş değerlendirme süreçlerine ihtiyaç duymaktadır. Bu bağlamda, hastalıklar üzerine yapılan araştırmaların etkili bir şekilde değerlendirilmesi gerektiği bilinmektedir. Bu çalışmada, hastalıklarla ilgili yayınlar metin analizi yöntemlerine tabi tutulmuş ve ardından verilerin önemli biyomedikal bağlantılarla ilişkilendirilmesini sağlayan bir ağ yapısına dönüştürülmüştür. Amaç, tedavi edici ve sebep verici gibi önemli bağlantılara sahip iki biyomedikal varlığın karmaşık ağ yapısını incelemektir. Bu durumda, manuel arama yöntemleriyle elde edilen varlık ikililerinin gerçek bağlantılar olduğu doğrulanmıştır. Bu çalışma, mevcut bilinen biyomedikal varlıkların bulunmasında sıklıkla zaman alan manuel arama sürecini başarıyla çözmüştür. Ayrıca, bu yöntem sayesinde birden fazla ikili bağlantı örüntüsü aracılığıyla bilinmeyen veya henüz keşfedilmemiş olası yeni ilişkilerin (tedavi edici, sebep verici vb.) keşfedilme potansiyeli bulunmaktadır. Sonuç olarak, çizge analizi, bilgi keşfi ve metin madenciliği gibi tekniklerin bir araya getirilmesi, biyomedikal araştırmalarda potansiyel olarak önemli yeni sonuçların keşfedilmesine yol açmaktadır.Doctoral Thesis Blokzincir Tabanlı Eşten-Eşe Enerji Ticareti Uygulamaları(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Seven, Serkan; Alkan, Gülay Yalçın; 0000-0003-2611-720X; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiThis thesis explores the potential of innovative peer-to-peer (P2P) energy trading schemes for virtual power plants (VPPs) using blockchain technologies, smart contracts, and decentralized finance (DeFi) instruments. Traditional centralized approaches have limitations in terms of transparency and security, which can hinder the successful implementation and operation of VPPs and P2P energy trading systems. The dissertation begins by reviewing the current state of energy sources within the global energy landscape. Understanding the existing landscape provides valuable insights into the potential benefits and challenges of implementing P2P energy trading within VPPs. The focus of the dissertation is to develop and analyze innovative P2P energy trading schemes for VPPs that integrate blockchain technologies and facilities to enhance transparency, security, and automation of energy transactions. Furthermore, DeFi instruments, specifically decentralized exchange (DEX), are used as a novel approach instead of auction methods to determine P2P energy buying and selling prices. Along with blockchain technologies, optimization is used to maximize the economic benefits of peers. The sequential decision problem of the trading schemes is solved with mixed integer linear programming (MILP). In addition, machine/deep learning models are utilized to overcome the drawbacks of conventional mathematical programming like MILP. These models can accelerate the decision-making processes by learning from the optimization results obtained. Overall, frameworks for the successful integration of P2P energy trading within and among VPPs are developed to validate the effectiveness and feasibility of the proposed P2P energy trading schemes through case studies and simulations using realistic data sets and blockchain platforms.Master Thesis Çalışan Yıpranması Tahmini ve Film Tavsiyesi için Öneri Sistemi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Özdemir, Fatma; Güngör, Vehbi Çağrı; Coşkun, Mustafa; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityBu tezde Makine Öğrenimi Topluluğunda ortaya atılan iki probleme odaklanıyoruz: tavsiye sistemi ve çalışanların yıpranma sorunu. Tavsiye sistemi, kullanıcıların bir ürün satın alırken belirli bir öğeyi tercih edip etmeyeceğini tahmin eden bir bilgi filtreleme sistemidir. Tavsiye sistemleri tahmin etmek için kullanıcı / öğe bilgilerini kullanır. Bu sistemler, özellikle işbirlikçi filtreleme tabanlı sistemler, E-ticarette yaygın olarak kullanılmaktadır. Bu çalışmada, ortak filtreleme ve kullanıcıların / öğelerin yan bilgilerini birleştiren karma bir model öneriyoruz. Önerilen modelde, ilişkili komşuları bulmak ve onları kümelemek için kullanıcıların / öğelerin yan bilgileri kullanılır. Daha sonra, bu kümelere ortak filtreleme yöntemleri uygulanır. Önerilen modelin performansını değerlendirmek için matris çarpanlara ayırma ve yeniden başlatma ile rastgele yürüme uygulanır. Önerilen yaklaşım MovieLens verileri üzerinde sistematik olarak değerlendirilir. Deneysel sonuçlar, kullanıcının / öğenin yan bilgisini kullanan önerilen modelin geleneksel ortak filtreleme yöntemlerinin performansını önemli ölçüde geliştirdiğini göstermektedir. Tezin ikinci bölümünde, hangi kişilerin şu anda çalıştıkları bir şirketten ayrılacağını / devam edeceğini tahmin etmeye çalışan, çalışan yıpranması tahmini sorununu ele almaya çalışıyoruz. Günümüzde şirketler için çalışanların işlerini bırakıp bırakmayacaklarını tahmin etmeleri çok önemlidir. En iyi performans gösteren çalışanların işi bırakması, kuruluşlarda finansal veya kurumsal bilgi kaybına neden olabilir. Bu tür kayıplardan kaçınmak için şirketler, çalışanların yıpranmasını tahmin etmelidir. Bununla birlikte, şirketlerin İK departmanları bu tür tahminleri yapacak kadar gelişmiş değildir. Bu amaçla şirketler, çalışanların yıpranmasını zamanında ve doğru bir şekilde tahmin etmek için veri madenciliği yöntemleri kullanmaktadır. Bu çalışmada, Doğrusal diskriminant analizi (LDA), Naive Bayes, Bagging, AdaBoost, Lojistik Regresyon, Destek Vektör Makinesi (SVM), Rastgele Orman, J48, LogitBoost, Çok Katmanlı Algılayıcı (MLP), K-En Yakın Komşular (KNN), XGBoost, Graph Convolutional Networks, iki özel şirket veri kümesinde (IBM ve Adesso İnsan Kaynakları veri kümelerine) çalışanların yıpranmasını tahmin etmek için uygulanmıştır. Mevcut çalışmalardan farklı olarak, bulgularımızı sistematik olarak F-ölçü, Eğri Altında Alan, doğruluk, duyarlılık ve özgüllük gibi çeşitli sınıflandırma metrikleri ile değerlendiriyoruz. Performans sonuçları, LogitBoost ve Lojistik Regresyon algoritmaları gibi veri madenciliği yöntemlerinin çalışanların yıpranmasını tahmin etmede çok yararlı olabileceğini göstermektedir.Doctoral Thesis Çoklu Robot Sistemleri için Lokalizasyon Algoritması Tasarımı ve Gerçekleştirilmesi(2024) Kabore, Kader Monhamady; Güler, Samet; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiÇok robotlu sistemler (MRS), tek bir robot için son derece zorlayıcı olan karmaşık görevleri gerçekleştirebilir. Örneğin, iş birliğiyle taşıma, alan kapsama ve arama-kurtarma operasyonları gibi uygulamalarda, MRS en iyi seçenek olabilir. MRS, görevleri daha basit komutlara bölerek bireysel robotlara atar. Bu yapı, ölçeklenebilirlik ve tek bir hata noktasına karşı dayanıklılık gibi önemli avantajlar sağlayan merkezi olmayan yaklaşımlara ilgiyi artırmıştır. MRS'deki formasyon kontrolü, özellikle GPS'in bulunmadığı ve dış altyapının olmadığı ortamlarda güçlü robot konumlandırmasına dayanır. Dış ortamlarda GPS mutlak konumlandırma sağlayabilir ancak kapalı alanlar veya tüneller gibi ortamlarda sürü robotları için yetersiz kalabilir. Hareket yakalama sistemleri gibi kapalı alan konumlandırma çözümleri, yüksek maliyetli olup ek altyapı kurulum prosedürleri gerektirir. Bu sınırlamalar, sürü robotikleri uygulamaları için uygun, dayanıklı ve dahili konumlandırma sistemlerine olan ihtiyacı vurgulamaktadır. Bu çalışma, tamamen dahili yeteneklere dayanan, dış altyapıya bağımlılığı ortadan kaldıran yeni bir merkezi olmayan, işaretleyicisiz konumlandırma çerçevesi sunmaktadır. MRS için bir konumlandırma çözümü bulmak amacıyla, yöntemimiz, derin öğrenme ile güçlendirilmiş iş birliği temelli konumlandırma algoritmalarını formasyon kontrol mekanizmalarıyla birleştirmektedir. Önerilen çerçevenin etkinliğini doğrulamak için kapsamlı simülasyonlar ve gerçek dünya deneyleri gerçekleştirilmiştir. Sistem ölçeklenebilirliği, farklı ekip boyutlarına uyum sağlayarak test edilmiştir ve uygulamalardaki etkinliği gösterilmiştir. Bu çalışma ayrıca yer robotları için açık kaynaklı bir veri seti sunarak MRS alanında daha fazla araştırmayı teşvik etmektedir.Doctoral Thesis Derin Öğrenme Tabanlı Kompozit Malzemelerin Ultrasonik Tomografi Görüntülerinden Kusurların Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Gülşen, Abdulkadir; Güngör, Burcu; Kolukısa, Burak; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiThis thesis introduces novel methodologies for enhancing defect classification and characterization in advanced composite materials by leveraging state-of-the-art machine learning (ML), deep learning (DL), and federated learning (FL) techniques within ultrasonic and acoustic emission (AE) inspection environments. First, a new ultrasonic dataset (UNDT), comprising 1,150 images from 60 distinct composite materials, is introduced. Applying transfer learning methods to both the UNDT and a publicly available dataset demonstrates the efficacy of advanced neural architectures—such as DenseNet121 and VGG19—achieving accuracy rates up to 98.8% and 98.6%, respectively. Next, the scope is extended to AE-based health monitoring by introducing an ensemble feature selection methodology to identify features strongly correlated with damage modes. By selecting amplitude and peak frequency for labeling and subsequently applying unsupervised clustering, the analysis confirms that both traditional AE features (e.g., counts and energy) and less commonly employed features (e.g., partial powers) correlate with distinct defect types. Finally, a novel FL framework is introduced to address the scarcity of publicly available, real-world ultrasonic datasets. This decentralized approach preserves data privacy while maintaining performance levels comparable to centralized methods, ensuring scalability and confidentiality in diverse data environments. Overall, these contributions significantly advance the field of NDT, offering robust defect classification and characterization. In doing so, the findings not only improve the accuracy and reliability of material integrity assessments but also lay a durable foundation for more secure, collaborative, and efficient NDT systems.Master Thesis Derin Öğrenme Temelli İlaç Yeniden Konumlandırma: Kelime Temsilleri ve Siyam İkizi Ağları Kullanılarak Literatüre Dayalı Bir Çerçeve(2025) Al-Qershi, Ahmed Marwan Abdulhabeb; Bakal, Mehmet Gökhan; 02. 04. Bilgisayar Mühendisliği; 01. Abdullah Gül University; 02. Mühendislik FakültesiGeleneksel ilaç geliştirme süreçlerinin yüksek maliyetleri, uzun zaman çizelgeleri ve riskleri, mevcut ilaçların yeni kullanım alanlarını keşfetmeyi amaçlayan ilaç yeniden konumlandırma çalışmalarına olan ilgiyi artırmıştır. Bu tez, SemMedDB'den elde edilen biyomedikal verileri kullanarak, ilaçlar ile hastalıklar arasındaki potansiyel yeni tedavi bağlantılarını belirlemeye yönelik derin öğrenmeye dayalı bir sistem sunmaktadır. Geliştirilen sistem, erken aşama ilaç keşfi için pratik ve verimli bir fikir üretme yöntemi sağlamayı hedeflemektedir. Sistem, FastText modelinden türetilen kelime desenlerini kullanarak eğitilen bir Siyam Sinir Ağı (SNN) mimarisine dayanmaktadır. Çalışmada, hangi yapının daha verimli özellikler çıkarabildiğini test etmek için biri yoğun (dense), diğeri evrişimli (convolutional) olan iki farklı alt ağ yapısı denenmiştir. 570'ün üzerinde model yapılandırması test edilmiş ve en iyi konfigürasyon %87.66 doğrulama doğruluğu ve yaklaşık %83 test doğruluğu elde etmiştir. Ayrıca kesinlik, duyarlılık ve F1-skorları açısından da dengeli bir performans sergilemiştir. Bu çalışma, derin öğrenmenin organize edilmiş biyomedikal literatür ile birleşiminin, daha akıllı ilaç keşif süreçlerine nasıl katkı sağlayabileceğini göstermektedir.Doctoral Thesis Derin Öğrenme Yaklaşımlarıyla Küçük Hücreli Dışı Akciğer Kanserinde Tümör Karakterizasyonu(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Bıçakcı, Mustafa; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityKüçük Hücreli Dışı Akciğer Kanseri (KHDAK) akciğer kanserlerinin büyük çoğunluğunu oluşturur ve adenokarsinom (ADC) ve skuamöz hücreli karsinom (SqCC) olmak üzere iki önemli alt tipi vardır. Genel olarak, bu iki alt tip mikroskobik olarak belirlenen morfolojik kriterler dikkate alınarak birbirinden ayrılır. Ancak, kötü morfoloji bunu oldukça zorlaştırır. Alt tipe özel tedavi yöntemleri için bu tür çalışmalar önemlidir. Bu tezde, pozitron emisyon tomografi (PET) görüntüleri kullanılarak KHDAK'nin alt tiplerinin sınıflandırılması üzerinde derin öğrenme (DÖ) yöntemleri incelenmiştir. İlk çalışmada, DÖ yöntemlerinin temelini oluşturan yapay sinir ağları (YSA) kullanılarak %73 doğru sınıflandırma başarısı elde edilmiştir. İkinci çalışmada, PET görüntülerinden alınan bölütlenmiş tümör kesitleri kullanılarak birkaç DÖ modeli incelenmiştir. Sonuçta, %95 F skoru ile VGG16 ve VGG19 en başarılı modeller olmuştur. Bu çalışmanın sonunda kesit bazlı çalışmalar bırakılarak hasta bazlı çalışmalara geçilmiştir. Üçüncü çalışmada, hasta bazlı dilimlerin birleştirilmesiyle oluşturulan üç boyutlu (3B) verilerin kullanımı yeterli başarıyı sağlamamıştır. Dördüncü çalışmada, PET görüntülerinin doğrudan kullanıldığı, tümör kısımlarının kırpılarak kullanıldığı ve bölütlenmiş tümör parçalarının kullanıldığı üç farklı deney yapılmıştır. Bu çalışma, peritümoral alanların sınıflandırmada olumlu etkisini ortaya koymuş ve VGG19 %74 F skoru değerine ulaşmıştır. Beşinci çalışmada, transfer öğrenme ve hassas ayar çalışmaları başarısızdı. CNN ve ResNet tabanlı sığ ağları içeren son çalışma %71 F skoru ile umut verici olmuştur.Master Thesis Derin Öğrenme Yöntemleri Kullanarak Dermatoskopik Görüntülerden Otomatik Cilt Kanseri Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi / Fen Bilimleri Enstitüsü, 2023) Kalaycı, Serdar; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityEarly detection of skin cancer is crucial for successful treatment and improved patient outcomes. The most prevalent form of cancer is skin cancer and if left undetected, it can spread and become more difficult to treat. A dangerous and frequently fatal type of skin cancer is melanoma. Regular skin examinations and self-examinations can help identify suspicious moles or lesions, which can then be evaluated by a dermatologist. In addition, advances in technology and artificial intelligence have enabled the development of tools for automated skin cancer screening, providing a convenient and efficient means of early detection. This can lead to more efficient diagnosis, reduced healthcare costs and improved patient care. By evaluating skin lesions from images, deep learning techniques have shown considerable potential in increasing the precision of melanoma detection. By using large datasets and complex neural networks, deep learning algorithms can effectively distinguish between benign and malignant skin lesions with high accuracy. Ensemble of CNN models helps improve the performance and reliability of the classification task. By combining the predictions of multiple CNN models lead to more accurate and robust predictions. In this thesis, for melanoma classification problem, many different data augmentations techniques applied and different convolutional neural networks architectures evaluated, applied vignetting effect filter and hair noise in accordance with the dataset and results of ensemble of the best CNN models are promising. This thesis attempts to produce a reliable model for the classification of melanoma by conducting experiments on two combined publically accessible data sets, ISIC 2019 and ISIC 2020. On the testing sets in our studies, the proposed solution attained 95.75% AUC.Master Thesis DEVELOPING A LABEL PROPAGATION APPROACH FOR CANCER SUBTYPE IDENTIFICATION PROBLEM(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Pınar, GÜNER; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityKanser terimi, anormal hücrelerin kontrolden çıkıp diğer dokuları istila ettiği hastalıkları tanımlamak için kullanılır. Çok sayıda kanser türü vardır ve birçok kanser türü, farklı klinik ve biyolojik etkileri olan çeşitli alt tiplere sahiptir. Bu farklılıklar, kanserin farklı alt tiplerinin tedavisi için farklı yöntemlerin izlenmesi gerektiğini göstermektedir. Kişiselleştirilmiş tıbbın geliştirilmesine yardımcı olabileceğinden, kanser alt tiplerini keşfetmek biyoinformatikte önemli bir problemdir. Kanserin alt tipinin bilinmesi, tedavi basamaklarının ve öngörünün belirlenmesinde faydalıdır. Hesaplamalı biyoinformatik yöntemler, farklı kanser alt tiplerinin ortak moleküler patolojisini ortaya çıkararak hedeflenen tedavileri tasarlamak için kanser analizi yapmaya yardımcı olur. Şimdiye kadar, kanser alt tiplerini keşfetmek veya kanseri bilgilendirici alt tiplere ayırmak için çeşitli hesaplamalı yöntemler önerildi. Ancak, mevcut çalışmalar verilerin seyrekliğini dikkate almamakta ve kötü koşullu (tersi alınamayan) çözümle sonuçlanmaktadır. Bu eksikliği gidermek için, bu tezde, uygulamalı sayısal cebir tekniklerini kullanarak kanseri alt tiplerine ayırmak için alternatif bir denetimsiz hesaplama yöntemi öneriyoruz. Daha detaylı olarak, bu etiket yayma tabanlı yaklaşımı kolon, baş ve boyun, rahim, mesane ve meme tümörlerinin somatik mutasyon profillerini sınıflandırmak için uyguladık. Sonra, yöntemimizin performansını temel yöntemlerle karşılaştırarak değerlendirdik. Kapsamlı deneyler, yaklaşımımızın, modern denetimsiz ve denetimli yaklaşımlardan büyük ölçüde daha iyi performans göstererek tümör sınıflandırma görevlerini yüksek oranda yerine getirdiğini kanıtlamaktadır.
