Akıllı Mikro-Şebekelerde Kontrol Stratejilerinin Geliştirilmesi
Date
2021, 2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abdullah Gül Üniversitesi Fen Bilimleri Enstitüsü
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
This thesis concerns the transformation of aged power systems to modern power systems that include microgrids with renewable energy sources and energy storage systems. The integration of renewable energy sources brings excellent opportunities to provide better reliability and efficiency. However, the uncertainty and intermittent nature of renewable energy sources may potentially degrade the stability and quality of the electrical grid. Therefore, the aim of this dissertation is to maintain the supply-demand balance in microgrids while minimizing the cost in real time operation. A microgrid energy management system that can optimize the dispatch of the controllable distributed energy resources in grid-connected mode of a pilot microgrid on a university campus in Malta was developed to achieve this goal. Three different methods were used in this study: mixed integer linear programming (MILP), MILP based rolling horizon control and Q-learning, Designing intelligent method for the real-time energy management of the stochastic and dynamic microgrid is the primary goal of this research. Moreover, the detailed mathematical models of the network model and of the technical model are considered for the economic and environmental operation of the microgrid system to solve the optimization problem under more real-world conditions. The objective is to minimize the total daily operation costs, which include the degradation cost of batteries, the cost of energy bought from the main grid, the fuel cost of the diesel generator, and the emission cost. The optimization problem is modeled as a finite Markov decision process (MDP) by combining network and technical constraints, and a Q-learning algorithm is adopted to solve the sequential decision subproblems. The proposed algorithm decomposes a multi-stage mixed-integer nonlinear programming (MINLP) problem into a series of single-stage problems so that each subproblem can be solved using Bellman's equation. To prove the effectiveness of the proposed algorithm, three different case studies are taken into consideration. A predictive control framework is also proposed to provide optimal operation with minimum cost. This method allows the consideration of operational cost values, demand with uncertainty, generation units' profiles with uncertainty, and constraints related to the network model and technical model. The stochastic and deterministic cases are conducted to validate the efficiency of the approach.
Bu tez, eskimiş güç sistemlerinin yenilenebilir enerji kaynakları ve enerji depolama sistemleri ile mikro şebekeleri içeren modern güç sistemlerine dönüşümü ile ilgilidir. Yenilenebilir enerji kaynaklarının entegrasyonu, daha iyi güvenilirlik ve verimlilik sağlamak için mükemmel fırsatlar sunar. Ancak yenilenebilir enerji kaynaklarının belirsizliği ve kesintili doğası, elektrik şebekesinin istikrarını ve kalitesini düşürebilir. Bu nedenle, bu tezin amacı, gerçek zamanlı çalışmada minimum maliyetle mikro şebekede arz-talep dengesini sağlamaktır. Bu amaca ulaşmak için Malta'daki bir üniversite kampüsünde pilot bir şebekeye bağlı mikro şebekenin kontrol edilebilir dağıtık enerji kaynaklarının çıkışlarını optimize edebilen enerji yönetim sistemi geliştirilmiştir. Temel olarak bu çalışmada üç farklı yöntem, karma tamsayılı doğrusal programlama (KTDP), KTDP tabanlı yuvarlanan ufuk kontrolü ve Q-öğrenme kullanılmıştır. Stokastik ve dinamik mikro şebekenin gerçek zamanlı enerji yönetimi için akıllı sistem tasarlamak, birincil hedefe ulaşmanın en önemli parçasıdır. Ayrıca, optimizasyon problemini daha gerçek dünya koşullarında çözmek için mikro şebeke sisteminin ekonomik ve çevresel çalışması için şebeke modelinin ve teknik modelin ayrıntılı matematiksel modelleri düşünülmüştür. Buradaki optimizasyon problemindeki amaç, bataryanın degradasyon maliyetini, ana şebekeden satın alınan enerjinin maliyetini, dizel jeneratörün yakıt maliyetini ve emisyon maliyetini kapsayan toplam günlük işletme maliyetlerini en aza indirmektir. Optimizasyon problemi, şebeke ve teknik kısıtlamaları birleştirerek sonlu bir Markov Karar Süreci (MKS) olarak modellenmiştir ve sıralı karar alt problemlerini çözmek için Q-öğrenme algoritması kullanılmıştır. Önerilen algoritma, çok aşamalı Tamsayılı Karışık Doğrusal Olmayan Programlama (TKDOP) problemini tek aşamalı probleme serisine ayrıştırır, böylece her bir alt problem Bellman denklemi kullanılarak çözülebilir. Önerilen algoritmanın etkinliğini kanıtlamak için üç farklı senaryo çalışması yapılmıştır. Ayrıca, minimum maliyetle optimum çalışmayı sağlamak için bir öngörülü kontrol metot önerilmiştir. Bu yöntem; işletme maliyet değerlerini, değişkenlik gösteren talebi, belirsizlik içeren üretim elemanlarının profillerini ve şebeke & teknik model ile ilgili kısıtlamaların dikkate alınmasını sağlamaktadır. Yaklaşımın etkinliğini doğrulamak için stokastik ve deterministik durumlar yürütülmüştür.
Bu tez, eskimiş güç sistemlerinin yenilenebilir enerji kaynakları ve enerji depolama sistemleri ile mikro şebekeleri içeren modern güç sistemlerine dönüşümü ile ilgilidir. Yenilenebilir enerji kaynaklarının entegrasyonu, daha iyi güvenilirlik ve verimlilik sağlamak için mükemmel fırsatlar sunar. Ancak yenilenebilir enerji kaynaklarının belirsizliği ve kesintili doğası, elektrik şebekesinin istikrarını ve kalitesini düşürebilir. Bu nedenle, bu tezin amacı, gerçek zamanlı çalışmada minimum maliyetle mikro şebekede arz-talep dengesini sağlamaktır. Bu amaca ulaşmak için Malta'daki bir üniversite kampüsünde pilot bir şebekeye bağlı mikro şebekenin kontrol edilebilir dağıtık enerji kaynaklarının çıkışlarını optimize edebilen enerji yönetim sistemi geliştirilmiştir. Temel olarak bu çalışmada üç farklı yöntem, karma tamsayılı doğrusal programlama (KTDP), KTDP tabanlı yuvarlanan ufuk kontrolü ve Q-öğrenme kullanılmıştır. Stokastik ve dinamik mikro şebekenin gerçek zamanlı enerji yönetimi için akıllı sistem tasarlamak, birincil hedefe ulaşmanın en önemli parçasıdır. Ayrıca, optimizasyon problemini daha gerçek dünya koşullarında çözmek için mikro şebeke sisteminin ekonomik ve çevresel çalışması için şebeke modelinin ve teknik modelin ayrıntılı matematiksel modelleri düşünülmüştür. Buradaki optimizasyon problemindeki amaç, bataryanın degradasyon maliyetini, ana şebekeden satın alınan enerjinin maliyetini, dizel jeneratörün yakıt maliyetini ve emisyon maliyetini kapsayan toplam günlük işletme maliyetlerini en aza indirmektir. Optimizasyon problemi, şebeke ve teknik kısıtlamaları birleştirerek sonlu bir Markov Karar Süreci (MKS) olarak modellenmiştir ve sıralı karar alt problemlerini çözmek için Q-öğrenme algoritması kullanılmıştır. Önerilen algoritma, çok aşamalı Tamsayılı Karışık Doğrusal Olmayan Programlama (TKDOP) problemini tek aşamalı probleme serisine ayrıştırır, böylece her bir alt problem Bellman denklemi kullanılarak çözülebilir. Önerilen algoritmanın etkinliğini kanıtlamak için üç farklı senaryo çalışması yapılmıştır. Ayrıca, minimum maliyetle optimum çalışmayı sağlamak için bir öngörülü kontrol metot önerilmiştir. Bu yöntem; işletme maliyet değerlerini, değişkenlik gösteren talebi, belirsizlik içeren üretim elemanlarının profillerini ve şebeke & teknik model ile ilgili kısıtlamaların dikkate alınmasını sağlamaktadır. Yaklaşımın etkinliğini doğrulamak için stokastik ve deterministik durumlar yürütülmüştür.
Description
Keywords
Electrical And Electronics Engineering, Elektrik Ve Elektronik Mühendisliği
Turkish CoHE Thesis Center URL
Fields of Science
Citation
A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF ABDULLAH GUL UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
111
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

6
CLEAN WATER AND SANITATION

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

13
CLIMATE ACTION

14
LIFE BELOW WATER

17
PARTNERSHIPS FOR THE GOALS
