Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/395
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu by Publisher "Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Doctoral Thesis A reliable and secure communication design for underwater sensor networks concerning energy efficiency(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) UYAN, Osman GökhanUnderwater Acoustic Sensor Networks (UASNs) recently attract scientists because of its wide range of applications and emerging technology. A design challenge in UASN's is the limited network lifetime and poor reliability caused by limited battery supply of sensors and harsh channel conditions in underwater environment. Moreover, sensors might transmit sensitive data that must be disguised against eavesdropping attacks. To maintain a reliability level, packet-duplication and multi-path routing method are suggested, which renders eavesdropping attacks easier. For data security, cryptographic encryption is the most acclaimed method. However, encryption needs extra computations, which consume extra energy and cause a decrease in the network lifetime. As a countermeasure along with encryption against silent listening, fragmenting data and transmitting in pieces over different paths has been proposed. To address these challenges, an optimization framework has been developed to analyze the effects of multi-path routing, packet duplication, encryption, and data fragmentation on network lifetime. However, the solution time of the proposed optimization model is quite high, and sometimes it cannot come up with feasible solutions. To this end, in this study, different regression and neural network methods have been proposed to predict the energy consumptions of underwater nodes as supplementary methods to optimization models. Performance evaluations show that the proposed methods yield remarkably accurate predictions and can be used for energy consumption prediction in UASNs.Doctoral Thesis FUNCTIONALIZED LOW LUMO [1]BENZOTHIENO[3,2-B][1]BENZOTHIOPHENE (BTBT)-BASED MOLECULAR SEMICONDUCTORS FOR ORGANIC FIELD EFFECT TRANSISTORS(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Özdemir, ResulDAcTTs have provided an excellent π-framework for the development of high mobility p-type molecular semiconductors in the past decade. However, n-type DAcTTs are rare and their electron transporting characteristics remain largely unexplored. In the second chapter of this thesis, the first example of an n-type BTBT-based semiconductor, D(PhFCO)-BTBT, has been realized via a two-step transition metal-free process without using chromatographic purification. The corresponding TC/BG-OFET devices demonstrated μe (max) = ~0.6 cm2/Vs and Ion/Ioff ratio = 107-108. The large band-gap BTBT π-core is a promising candidate for high mobility n-type organic semiconductors and, combination of very large intrinsic charge transport capabilities and optical transparency, may open a new perspective for next-generation (opto)electronics. In the third chapter of this thesis, a series of BTBT-based small molecules, D(C7CO)-BTBT, C7CO-BTBT-CC(CN)2C7, and D(C7CC(CN)2)-BTBT, have been developed in “S-F-BTBT-F-S (F/S: functional group/substituent)” molecular architecture. Combining with D(PhFCO)-BTBT, a molecular library with systematically varied chemical structures has been studied herein for the first time for low LUMO DAcTTs, and key relationships have been elucidated. The molecular engineering perspectives presented in this thesis may give unique insights into the design of novel electron transporting thienoacenes for unconventional optoelectronics.
