FUNCTIONALIZED LOW LUMO [1]BENZOTHIENO[3,2-B][1]BENZOTHIOPHENE (BTBT)-BASED MOLECULAR SEMICONDUCTORS FOR ORGANIC FIELD EFFECT TRANSISTORS
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
DAcTTs have provided an excellent π-framework for the development of high mobility p-type molecular semiconductors in the past decade. However, n-type DAcTTs are rare and their electron transporting characteristics remain largely unexplored. In the second chapter of this thesis, the first example of an n-type BTBT-based semiconductor, D(PhFCO)-BTBT, has been realized via a two-step transition metal-free process without using chromatographic purification. The corresponding TC/BG-OFET devices demonstrated μe (max) = ~0.6 cm2/Vs and Ion/Ioff ratio = 107-108. The large band-gap BTBT π-core is a promising candidate for high mobility n-type organic semiconductors and, combination of very large intrinsic charge transport capabilities and optical transparency, may open a new perspective for next-generation (opto)electronics. In the third chapter of this thesis, a series of BTBT-based small molecules, D(C7CO)-BTBT, C7CO-BTBT-CC(CN)2C7, and D(C7CC(CN)2)-BTBT, have been developed in “S-F-BTBT-F-S (F/S: functional group/substituent)” molecular architecture. Combining with D(PhFCO)-BTBT, a molecular library with systematically varied chemical structures has been studied herein for the first time for low LUMO DAcTTs, and key relationships have been elucidated. The molecular engineering perspectives presented in this thesis may give unique insights into the design of novel electron transporting thienoacenes for unconventional optoelectronics.
Description
Keywords
Organic Semiconductor, Small Molecule, N-type (electron transporting), low LUMO energy level, Organic Field Effect Transistors (OFETs)
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
Page Views
4
checked on Dec 05, 2025