İnşaat Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/205
Browse
Browsing İnşaat Mühendisliği Bölümü Koleksiyonu by Author "Kızılkaya Aydoğan, Emel"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article Life Cycle Assessment of the Neutralization Process in a Textile WWTP(Erciyes Üniversitesi, 2020) Şener Fidan, Fatma; Kızılkaya Aydoğan, Emel; Uzal, Niğmet; 0000-0002-0912-3459; 0000-0003-0927-6698; 0000-0002-2397-3628; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, Nigmet; 01. Abdullah Gül University; 02.02. Endüstri Mühendisliği; 02. Mühendislik Fakültesi; 02.03. İnşaat MühendisliğiAlthough industrial wastewater treatment plants (WWTP) have become_x000D_ an important part of textile facilities in reducing environmental pollution_x000D_ problems, they also produce sludge and various emissions such as high chemical_x000D_ oxygen demand, color and conductivity which have serious negative impacts on_x000D_ the environment. One of the processes with enormous chemical consumption in_x000D_ industrial WWTP of textile facilities is the neutralization process, which aims to_x000D_ adjust the pH of the wastewater. Neutralization processes needed to be optimized_x000D_ in order to determine its overall environmental impacts and then identify the most_x000D_ environmentally appropriate options. The aim of this study is to compare the_x000D_ environmental impacts of carbon dioxide and sulfuric acid, which are two_x000D_ alternative chemicals used in the neutralization process of textile facilities, using_x000D_ Life Cycle Assessment (LCA) approach. The environmental impacts resulting from_x000D_ the use of these two chemicals proposed according to the Reference document on_x000D_ Best Available Techniques (BREF) Document for Textile Industry were revealed by_x000D_ the CML-IA method and the gate-to-gate method. According to the results, using_x000D_ carbon dioxide instead of sulfuric acid, the best improvement was in the abiotic_x000D_ depletion category with 92%, while the least improvement was in the_x000D_ eutrophication potential with 39%. No improvement was observed in the global_x000D_ warming potential and human toxicity impacts.
