İnşaat Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/205
Browse
Browsing İnşaat Mühendisliği Bölümü Koleksiyonu by Access Right "info:eu-repo/semantics/closedAccess"
Now showing 1 - 20 of 112
- Results Per Page
- Sort Options
Article Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag(ELSEVIER SCI LTD, 2012) Bilim, Cahit; Atis, Cengiz Duran; 0000-0003-3459-329X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atis, Cengiz DuranThe aim of the present study is to investigate some properties of alkali-activated mortars containing slag at different replacement levels. Ground granulated blast furnace slag was used at 0%, 20%, 40%, 60%, 80% and 100% replacement by weight of cement, and liquid sodium silicate having three different Na dosages was chosen as the alkaline activator. In this research, carbonation resistance measurements and compressive and flexural strength tests were performed on the mortar specimens with size of 40 40 160 mm. The findings obtained from the tests showed that carbonation depth values of the mortars decreased with the increase of activator dosage. Additionally, compressive and flexural strength values increased with the increase in activator concentration and slag replacement level. Portland cement/slag mortars activated by liquid sodium silicate exhibited lower strength than the slag alone activated by the same activator.Article Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill(ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD24-28 OVAL RD, LONDON NW1 7DX, ENGLAND, 2017) Yukseler, H.; Uzal, N.; Sahinkaya, E.; Kitis, M.; Dilek, F. B.; Yetis, U.; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, NigmetThe present study was undertaken as the first plant scale application and evaluation of Best Available Techniques (BAT) within the context of the Integrated Pollution Prevention and Control/Industrial Emissions Directive to a textile mill in Turkey. A "best practice example" was developed for the textile sector; and within this context, BAT requirements for one of the World's leading denim manufacturing textile mills were determined. In order to achieve a sustainable wastewater management; firstly, a detailed wastewater characterization study was conducted and the possible candidate wastewaters to be reused within the mill were identified. A wastewater management strategy was adopted to investigate the possible reuse opportunities for the dyeing and finishing process wastewaters along with the composite mill effluent. In line with this strategy, production processes were analysed in depth in accordance with the BAT Reference Document not only to treat the generated wastewaters for their possible reuse, but also to reduce the amount of water consumed and wastewater generated. As a result, several applicable BAT options and strategies were determined such as reuse of dyeing wastewaters after treatment, recovery of caustic from alkaline finishing wastewaters, reuse of biologically treated composite mill effluent after membrane processes, minimization of wash water consumption in the water softening plant, reuse of concentrate stream from reverse osmosis plant, reducing water consumption by adoption of counter-current washing in the dyeing and finishing processes. The adoption of the selected in-process BAT options for the minimization of water use provided a 30% reduction in the total specific water consumption of the mill. The treatability studies adopted for both segregated and composite wastewaters indicated that nanofiltration is satisfactory in meeting the reuse criteria for all the wastewater streams considered. (C) 2017 Elsevier Ltd. All rights reserved.Article Analysis of the probability of failure for open-grown trees during wind storms(ELSEVIER SCI LTD, 2014) Ciftci, Cihan; Arwade, Sanjay R.; Kane, Brian; Brena, Sergio F.; 0000-0001-9199-6437; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Ciftci, CihanAlthough trees convey important environmental, economic, and sociological benefits on humans and society, they can also cause significant economic and societal disruptions, especially when subjected to wind storms in urban environments. Tools for proper assessment of the risk of these disruptions can be of significant benefit to society. In this research an approach to quantifying the failure probability for trees subject to wind storms is presented and illustrated by application to two specific maple trees in Massachusetts, USA. The approach entails four specific steps: (1) Random wind time history samples were generated using a modified Ochi–Shin spectrum, (2) these wind time histories were used as loading time histories on finite element models of the example trees in both summer (in-leaf) and winter (leafless), (3) maximum bending moments generated by the random wind time histories were compared to the failure (yield) moment of the tree at 1.4 m above ground, (4) the failure/fragility curves of the trees were estimated by Monte Carlo simulation for a range of average wind speeds and for 1000 independent wind time histories at each wind speed.Article Arsenic removal from aqueous solutions by ultrafiltration assisted with polyacrylamide: an application of response surface methodology(DESALINATION PUBL, 2015) Varol, Bekir; Uzal, Nigmet; 0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, NigmetThe present work deals with removal of arsenic from aqueous solutions by ultrafiltration assisted with polyacrylamide as an environmental friendly complexing polymer. The system performance was evaluated in relation to quality of permeate in terms of operating variables as feed concentration of arsenic ions (C-o, gL(-1)), ratio of polymer to arsenic (r, w/w), and pH of feed solution. The effect of the operating variables and maximum arsenic removal efficiency was determined by adopting design of experiments and response surface methodology under different conditions for this polymer. The experimental data were analyzed with a second order polynomial model validated by statistical analysis. Based on the response model developed, the maximum removal efficiency, close to 100%, of arsenic ions has been obtained at optimum operating parameters as C-o: 150 gL(-1), r: 2, and pH 10.Article Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing(ELSEVIERRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2021) Akin, Mutluhan; Dincer, Ismail; Ok, Ali Ozgun; Orhan, Ahmet; Akin, Muge K.; Topal, Tamer; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Akin, Muge K.Rockfall ditches or catchment areas aim to collect falling blocks at the toe of a source zone by dissipating the energy of blocks in an excavated trench. The effectiveness of a rockfall ditch is simply expressed by its block catchment performance and can be evaluated by empirically using existing design charts as well as rockfall simulations. Although 2-dimensional (2-D) analysis has been executed to assess the catchment ditch effectiveness in engineering practice, 3-dimensional (3-D) rockfall models have not received enough attention so far. In this study, the effectiveness of a considerably long rockfall ditch to protect a settlement from falling rocks was assessed on the basis of 3-D rockfall analyses executed using high-resolution digital surface models. The rockfall ditch efficiency was found to be moderate to limited for various segments considering the percentage of blocks not trapped by the ditch. Moreover, the sensitivity of ditch efficiency to ditch depth was analyzed by automated image processing method as well. Additionally, a particular section of ditch alignment was fictitiously excavated or filled by synthetic Digital Surface Model (DSM) generation through image processing. 3-D rockfall modeling carried out using the DSMs with synthetically manipulated ditches points out that the effectiveness of a catchment ditch is highly depended upon ditch depth. Even a small volume of block accumulation inside the ditch definitely reduces the ditch performance resulting extended runout distances reaching to residential area. Finally, 3-D rockfall modeling is accepted to be an effective tool to rate the efficiency of existing rockfall ditches and synthetically generated ditches on DSMs (or DEMs) by means of automated image processing method may assist the control of current ditch dimension as well as new catchment ditch design.Article Characteristics of calcined natural zeolites for use in high-performance pozzolan blended cements(ELSEVIER SCI LTD, 2014) Uzal, Burak; Kucukyildirim, E; 0000-0002-3810-7263; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, BurakTwo natural zeolites with different characteristics were calcined at various temperatures in order to improve the benefits provided by their use in blended cements as cement replacement material. Natural zeolites were firstly characterized for their crystallinity by X-ray diffraction analysis, specific surface area by nitrogen absorption, and pozzolanic activity by electrical conductivity method, before and after the calcination. In order to assess the performance of calcined natural zeolite as cement replacement material, blended Portland cement pastes and mortars with raw and calcined zeolites were tested for their water requirement, free lime content, pore size distribution and compressive strength. The experimental results indicated that calcined zeolites are more desirable with lower water requirement and higher strength performance as cement replacement material than the raw zeolites. Blended cement with calcined natural zeolite showed higher compressive strength performance, when compared to that with the raw zeolite due to decreased porosity and refined pore structure of the hardened cementitious systemArticle Characterization of Limestone Calcined Clay Cement Made with Calcium Sulfoaluminate Clinker(SPRINGER, 2024) Atasever, Muhammet; Erdoğan, Sinan Turhan; 0000-0001-7375-8152; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atasever, MuhammetThis study concentrated on producing limestone calcined clay calcium sulfoaluminate cement by replacing portland cement in limestone calcined clay cement with calcium sulfoaluminate cement, with the goal of increasing the early strength of limestone calcined clay cement. The mineralogy and microstructures of hydrating pastes were investigated using x-ray diffraction and scanning electron microscopy. Heat evolution was studied using isothermal calorimetry. Strength development and workability were assessed on mortar samples. The 1 day strengths of limestone calcined clay calcium sulfoaluminate cement samples exceeded those of limestone calcined clay cement by ~ 30–80%, though its strength gain slows significantly after 1 day due to the lack of calcium silicates, affecting pH and clay dissolution. Despite this, the strength development of limestone calcined clay calcium sulfoaluminate cement, when adjusted for CO2 emissions, is comparable to limestone calcined clay cement. Additionally, limestone calcined clay calcium sulfoaluminate cement provides a 10–15% higher flow and exhibits a lower heat of hydration beyond 12 h, while maintaining a production cost similar to that of limestone calcined clay cement.Article Characterizing boron-enhanced one-part alkaline-activated mortars: Mechanical properties, microstructure and environmental impacts(ELSEVIER, 2024) Örklemez, Ezgi; İlkentapar, Serhan; Durak, Ugur; Gülçimen, Sedat; Uzal, Niğmet; Uzal, Burak; Karahan, Okan; Atiş, Cengiz Duran; 0000-0002-8967-3484; 0000-0002-3810-7263; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Gülçimen, Sedat; Uzal, Niğmet; Uzal, BurakSince alkali activators negatively effect the environmental impact assessment, it is necessary to develop the alternative activators from natural sources with low environmental impact. Therefore, in this study, the usage of boron refined products colemanite, ulexite and boron pentahydrate as activators in slag-based alkali-activated mortar systems was investigated in detail. Flexural and compressive strength tests, isothermal calorimetry measurement, thermogravimetric and differential thermal analysis, inductively coupled plasma mass spectrometry analysis, field emission scanning electron microscopy, and energy dispersive analysis and elemental mapping and X-ray diffraction analysis were carried out on the samples. In addition, sample production was subjected to life cycle analysis (LCA) with a cradle-to-gate approach using two different transportation scenarios. According to the results obtained, it was determined that colemanite, ulexite and boron penta hydrate, when used in optimum proportions, had a positive effect on strength (up to increase 40% compressive strength by 20% ulexite replacement) and could be used as an activator in slag-based alkali-activated systems. The positive results obtained in strength as a result of using boron-refined products are also supported by other test results conducted within the scope of the study. Furthermore, according to the LCA results, it was observed that there was a significant decrease in global warming potential with the substitution of 20% colemanite, ulexite or boron pentahydrate as activators, not only compared to the reference sample but also traditional cementitious systems.Article A cleaner demolition scheduling methodology considering dust dispersion: A case study for a post-earthquake region(ELSEVIER, 2024) Dincer, Ali Ersin; Demir, Abdullah; Dilmen, Omer; 0000-0002-4662-894X; 0000-0002-6392-648X; 0000-0002-7494-8625; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dincer, Ali Ersin; Demir, Abdullah; Dilmen, OmerIn the present century, pollution is a primary concern for billions, prompting governments to advocate cleaner ways of production. Demolition activity is often an indispensable solution for structures that have completed their economic life. However, there are no regulations for the scheduling of demolition, except those related to the method of demolition and ensuring worker safety. Older buildings incorporate hazardous materials, such as asbestos, silica, and lead. These materials not only carry inherent risks, but high levels of aerosols in the air also adversely affect health. In this study, a demolition scheduling method is proposed, considering the dust dispersion. This research is pioneering, providing a structured demolition schedule to minimize the impact on both humans and the environment. In the methodology, a dispersion model is used to calculate the region exposed to dust and the concentration distribution throughout that area. In addition to the dust effect map, a vulnerability map is created using Analytical Hierarchy Process (AHP), aiding in determining interrelations between vulnerable sites. Thus, the dust effect map is derived by considering both dust exposure and the vulnerability map. The region affected by dust and the concentration of dust vary based on wind characteristics. By knowing the dust effect maps for the site (or all subsites) during specified time periods, a schedule can be defined. As a case study, schedules causing the absolute minimum and optimum dust effect rates are established for Kahramanmaras,, , , T & uuml;rkiye which recently experienced a devastating earthquake. The findings of the case study show that the dust effect on humans and the environment is significantly reduced. Consequently, by adhering to the proposed scheduling plan, human exposure to demolition dust is minimized, resulting in reduced medical expenses even without increasing the cost of the demolition.Article Comparative analysis of hybrid geothermal-solar systems and solar PV with battery storage: Site suitability, emissions, and economic performance(ELSEVIER, 2024) Fedakar, Halil Ibrahim; Dinçer, Ali Ersin; Demir, Abdullah; 0000-0002-7561-5363; 0000-0002-4662-894X; 0000-0002-6392-648X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Fedakar, Halil Ibrahim; Dinçer, Ali Ersin; Demir, AbdullahRenewable energy integration has become a critical focus in the global effort to reduce carbon emissions and diversify energy sources. In regions with distinct geographic features, such as Türkiye, combining different renewable technologies can offer enhanced energy security. This study investigates the site suitability and economic and environmental performance of hybrid geothermal-solar systems and solar PV systems with battery storage across the provinces of Osmaniye, Hatay, and Kilis, of Türkiye. Using the fuzzy-AHP method, site suitability is evaluated, addressing a key gap in comparing these systems' adaptability to varying geographic conditions. This study is the first to directly compare these two renewable energy technologies in terms of site suitability. The findings reveal significant differences in site suitability, with solar PV systems with battery storage demonstrating broader applicability across the region. The suitable sites (20–100 % suitability) cover 1260.82 km² for solar PV systems with battery storage and only 122.18 km² for hybrid geothermal-solar systems. In terms of environmental impact, hybrid geothermal-solar systems exhibit significantly lower carbon emissions, averaging 44.6 kg CO₂/MWh, compared to 123.8 kg CO₂/MWh for solar PV systems with battery storage. Economically, hybrid geothermal-solar systems also outperform with a lower levelized cost of electricity of $0.091 kWh versus $0.254 kWh for solar PV systems. These results highlight the environmental and economic advantages of hybrid geothermal-solar systems, while also emphasizing their limited scalability to regions with geothermal activity. Conversely, solar PV systems, despite their higher emissions and costs, offer greater flexibility and potential for widespread deployment.Article Comparative life cycle assessment of retort pouch and aluminum can for ready-to-eat bean packaging(SPRINGER, 2023) Gulcimen, Sedat; Ozcan, Ozlem; Cevik, Selin Babacan; Kahraman, Kevser; Uzal, Nigmet; 0000-0002-8967-3484; 0000-0002-2786-3944; 0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Gulcimen, Sedat; Ozcan, Ozlem; Kahraman, Kevser; Uzal, NigmetSince packaging contributes to severe environmental impacts in food production, alternatives of packaging materials that satisfy customer needs while minimizing environmental impacts in a cost-effective manner should be preferred for food product sustainability. This paper compares two different packaging materials (aluminum cans and retort pouches) with a life cycle approach to assess the environmental impacts of ready-to-eat bean packaging. The life cycle assessment (LCA) was used to define and compare the environmental performance of ready-to-eat beans in aluminum cans and retort pouches. The gate-to-gate approach was used in the LCA, with a functional unit of 1 kg of packaged ready-to-eat bean product. Inventory for packaging in retort pouch was created in collaboration with Duru Bulgur Company (Karaman, Turkey) and the data for ready-to-eat beans in the aluminum can were gathered from the literature. The findings show that ready-to-eat beans in retort pouches have lower environmental impacts than ready-to-eat beans in aluminum cans. The packaging and washing processes for both ready-to-eat beans packaged in aluminum cans and retort pouches had the greatest environmental impact. In ready-to-eat beans production, retort pouch provides 87% better environmental performance than aluminum can in terms of global warming (GW). Overall, the results demonstrated that replacing aluminum cans with retort pouches in ready-to-eat bean production can significantly reduce environmental effects in all impact categories.Article Comparison of SPT and V-s-based liquefaction analyses: a case study in Ercis (Van, Turkey)(SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND, 2018) Akkaya, Ismail; Ozvan, Ali; Akin, Mutluhan; Akin, Muge K.; Ovun, Ugur; 0000-0002-7682-962X; 0000-0001-8873-5287; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği BölümüLiquefaction which is one of the most destructive ground deformations occurs during an earthquake in saturated or partially saturated silty and sandy soils, which may cause serious damages such as settlement and tilting of structures due to shear strength loss of soils. Standard (SPT) and cone (CPT) penetration tests as well as the shear wave velocity (V-s)-based methods are commonly used for the determination of liquefaction potential. In this research, it was aimed to compare the SPT and V-s-based liquefaction analysis methods by generating different earthquake scenarios. Accordingly, the Ercis residential area, which was mostly affected by the 2011 Van earthquake (M-w = 7.1), was chosen as the model site. Ercis (Van, Turkey) and its surroundings settle on an alluvial plain which consists of silty and sandy layers with shallow groundwater level. Moreover, Caldiran, Ercis-Kocapinar and Van Fault Zones are the major seismic sources of the region which have a significant potential of producing large magnitude earthquakes. After liquefaction assessments, the liquefaction potential in the western part of the region and in the coastal regions nearby the Lake Van is found to be higher than the other locations. Thus, it can be stated that the soil tightness and groundwater level dominantly control the liquefaction potential. In addition, the lateral spreading and sand boiling spots observed after the 23rd October 2011 Van earthquake overlap the scenario boundaries predicted in this study. Eventually, the use of V-s-based liquefaction analysis in collaboration with the SPT results is quite advantageous to assess the rate of liquefaction in a specific area.conferenceobject.listelement.badge Compatibility of Superplasticizers with Limestone-Metakaolin Blended Cementitious System(SPRINGER, 2015) Zaribaf, Behnaz H.; Uzal, Burak; Kurtis, Kimberley; 0000-0002-3810-7263; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, BurakThis study investigates the performance of polycarboxylate ether (PCE), polymelamine sulfonate (PMS), sodium lignosulfonate and naphthalene formaldehyde condensate (PNS) superplasticizers (SPs) with ASTM C595 Type IL cement (with up to 15% calcium carbonate) combined with 10 and 30 % metakaolin (MK) substitutions by mass. The required dosage of each SP for 10 % and 30 % MK substitutions were determined based on mini slump test to establish equivalent paste flow. At these dosage rates, the effects of SPs on setting time, hydration kinetics, and strength development were measured. Life cycle assessment (LCA) was carried out on different cement compositions used in this study to evaluate the greenhouse gas emissions and embodied energy of limestone-metakaolin blended cement with SP addition. While MK substitution decreases the workability of samples and shortens the setting time, this study shows that adequate dosages of a compatible type of SP can be used to compensate for these effects. Of the SPs examined, PCE and PMS are found to be more compatible, compared to PNS and sodium lignosulfonate, with limestone-metakaolin blended cements.Article Comprehensive analysis of experimental and numerical results of bond strength and mechanical properties of fly ash based GPC and OPC concrete(ELSEVIER, 2024) Aslanbay, Yuksel Gul; Aslanbay, Huseyin Hilmi; Özbayrak, Ahmet; Kucukgoncu, Hurmet; Atas, Oguzhan; 0000-0001-5148-8753; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Kucukgoncu, HurmetNowadays, materials in the more environmentally friendly waste product class, which can be an alternative to standard Portland cement (OPC), are frequently used by researchers in concrete production. One of these, namely fly ash-based geopolymer concrete (GPC), should demonstrate its superiority over OPC in terms of chemical and mechanical properties to enhance its utilization. One of the mechanical properties of GPC is the bond strength between reinforcement and concrete. In this study, it was aimed to obtain bond strengths by performing tensile tests on GPC samples with varying sodium silicate/sodium hydroxide (SS/SH) and alkaline activator/fly ash (AA/FA) ratios. A pull-out experimental setup was prepared in accordance with RILEM Standard. Experimental results were compared with numerical results obtained from finite element models designed in ABAQUS software and were found to be compatible. When evaluated in terms of peak load and max bond stress values, GPC is superior to OPC. Compared to OPC an increase in the SS/SH ratio enhances mechanical properties such as compressive strength and bond load, whereas an increase in the AA/FA ratio with a value of 0.7 in the series has the opposite effect. In the finite element models, stress values are higher in samples with an AA/FA ratio of 0.5 compared to other ratios. An increase in the AA/FA ratio leads to a decrease in stress values. The analytical results are demonstrated that the proposed model can be utilized to assess the bond strength performance between traditional reinforced concrete and fly ash-based geopolymer concrete. Additionally, as a result of experimental studies, a formula that can be used to estimate bond strength based on GPC compressive strength and shows the superiority of GPC compared to studies in the literature has been proposed.Article Comprehensive experimental analysis of the effects of elevated temperatures in geopolymer concretes with variable alkali activator ratios(ELSEVIER, 2023) Ozbayrak, Ahmet; Kucukgoncu, Hurmet; Aslanbay, Huseyin Hilmi; Aslanbay, Yuksel Gul; Atas, Oguzhan; 0000-0001-5148-8753; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Kucukgoncu, HurmetBy growing population and rapid urbanization, demand for concrete increases exponentially. Researches on use of fly ash material in waste product class for concrete production are important to produce concrete more environmentally friendly. However, there is a need for more research to use geopolymer concrete (GPC) in every field where ordinary Portland cement concrete (OPC) is used. Therefore, it is crucial to experimentally investigate thermal properties as well as mechanical properties of geopolymer concrete. As investigated thermal properties, the main factor affecting strength development of GPC is alkali activator ratios. In this study, GPC prism samples with nine different compositions, produced by various alkali ratios. After flexural strength tests, they were cut into cubes and exposed to 400 ◦C, 600 ◦C and 800 ◦C, then they were subjected to compressive strength tests. Results obtained from different AA/FA and SS/SH ratios were evaluated as mechanical properties at ambient temperature and physical, mechanical and microstructural properties at elevated temperature. An empirical formula, which considers the effect of activator ratios, was proposed to calculate flexural strength depending on compressive strength of samples at ambient temperature. As an increase of SS/SH and AA/FA ratios, compressive strength increased, while flexural strength decreased. The increase in AA/FA ratio decreased compressive strength of samples exposed to high temperatures, while increase in SS/SH ratio did not determine at elevated temperatures. There is an inverse change with AA/FA ratio and parallel change with SS/SH ratio between compressive strengths of samples at ambient temperature and exposed to high temperature.Article Debris flow modelling and hazard assessment for a glacier area: a case study in Barsem, Tajikistan(SPRINGER, 2023) Yılmaz, Kutay; Dincer, Ali Ersin; Kalpakcı, Volkan; Öztürk, Şevki; 0000-0002-4662-894X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Dincer, Ali ErsinThis study analyses a previous debris fow hazard as a consequence of emerging risks related to climate and regional physical changes. In addition to the increasing food frequencies, there is an increasing risk of mud or debris fow due to increasing temperature and heavy precipitation resulting in glacier melting. One of the most recent dramatic examples of the debris fow incident took place in Barsem, Tajikistan, in 2015. As a result of heavy precipitation and excess temperature, the melting of glaciers caused debris fow which ended up with a catastrophic damage at Barsem Town. In this study, a methodology for modelling debris fow and related hazard is developed by examining the 2015 incident in detail with a commercially available software, Hydrological Engineering Centre-River Analysis System (HEC-RAS). Simulations and hazard assessment of the incident suggest that assessment of debris fow hazard can be implemented similar to food hazard. Moreover, it is seen that debris fow inundation area can be predicted accurately by low-resolution free-source digital elevation models (DEMs), while in the present work they could not predict the debris fow hazard assessment accurately. Sensitivity results also reveal that freesource DEMs with higher resolutions do not necessarily give better predictions than freesource DEMs with lower resolutions.Article Deformation characteristics of medium-dense sand-clay mixtures under a principal stress rotation(ELSEVIERRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2021) Fedakar, Halil Ibrahim; Cetin, Bora; Rutherford, Cassandra J.; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Fedakar, Halil IbrahimA moving wheel load induces a principal stress rotation (PSR) in pavement foundation geomaterials including subgrade/subbase soils. Simulating such a stress condition is not possible with stress path tests conducted with conventional cyclic triaxial (CT) equipment. More complex stress paths such as a heart-shaped stress path are required to determine the deformation characteristics of these under a PSR. A heart-shaped stress path can be simulated on a soil specimen in cyclic hollow cylinder (CHC) tests via user-defined waveforms for its stress components (axial stress, and torsional shear stress). In this study, a series of CT and CHC tests were performed to analyze the impact of a PSR on strain behaviors of medium-dense sand-clay mixtures. The specimens contained 0%, 5%, 10%, and 20% clay by weight and were prepared at an initial relative density of 50%. All specimens were anisotropically consolidated under K-0 approximate to 0.5. It was determined that all CT specimens underestimated the strain performances (both axial strain and shear strain) of the sand-clay mixtures. On the other hand, a heartshaped stress path was simulated successfully in CHC tests and thus, all specimens yielded more accurate strain results. At low clay content (<= 10%), the impact of a PSR on strain performances of the sand-clay mixtures was observed to be less (axial strain (epsilon(z)) < 0.12%, and shear strain (gamma(z theta)) 0.8% after number of load cycles (N) = 5000) due to the low stress ratios (CVSR = 0.15 and eta = 1/3). On the other hand, despite the low stress ratios, a PSR caused a rapid increase in axial strain and shear strain (epsilon(z) = 5%, and gamma(z theta) 0.8%) of the specimen containing 20% clay, which resulted in the failure of the specimen at N = 478. Results of this study clearly indicated that the effect of a PSR should be taken into consideration while evaluating the strain characteristics of the sand-clay mixtures that contain clay particularly at high contents (>= 20%) under traffic loads.Article Determination of stress-strain relationship based on alkali activator ratios in geopolymer concretes and development of empirical formulations(ELSEVIER SCIENCE INC, 2023) Ozbayrak, Ahmet; Kucukgoncu, Hurmet; Atas, Oguzhan; Aslanbay, Huseyin Hilmi; Aslanbay, Yuksel Gul; Altun, Fatih; 0000-0001-5148-8753; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Kucukgoncu, HurmetFly ash-based geopolymer has recently gained attention of researchers due to its potential application, as well as being an alternative binder with low emissions compared to ordinary Portland cement (OPC) in concrete production. Studies which are conducted on the design and mechanical properties of structural members produced from fly ash geopolymer concrete (GPC) are very important in terms of increasing the use of this concrete. The aim of this study is to obtain experimental data on the effect of sodium silicate/sodium hydroxide (SS/SH) and alkali activators/fly ash (AA/FA) ratios on the mechanical properties of a low calcium heat-cured fly ash geopolymer. In addition, it is to reveal the similarities and differences of OPC and GPC by comparing the mathematical formulations in existing regulations and concrete models with experimental data. Thus, geopolymer cylinder concrete samples were produced using 15 different mixtures with SS/SH ratios of 1.5, 2.5 and 3.5, while AA/FA ratios of 0.4, 0.5, 0.6, 0.7 and 0.8. At the end of the study, the optimum SS/SH ratio was obtained as 2.5. A decrease in the AA/FA ratio increases the compressive and splitting tensile strength, while an increment increases the ductility and consuming energy. In addition, the relationship between the experimental data and the splitting tensile strength and modulus of elasticity formulations depending on the compressive strength given in other studies and regulations as a part of literature was investigated, and then, two alternative empirical formulations considering the ratios of alkali activators were proposed at the end of the regression analysis. When the stress-strain relationship of OPC concrete models and GPC mixtures were compared, the closest unconfined concrete model for GPC concrete was the Hognestad model.conferenceobject.listelement.badge Determining the priority waste in aluminum manufacturing sector using the smaa-2 method: A case study of kayseri(Computers and Industrial Engineering, 2014) Aydogan, Emel Kizilkaya; Ates, Nuray; Uzal, Nigmet; Ozmen, Mihrimah; 0000-0002-0912-3459; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, NigmetSmall and medium-sized enterprises (SMEs) constitute a major part of the Turkish economy, accounting for a large proportion of the country's businesses and total employment. Although the SMEs are known as important contributors to environmental pollution, the relative contribution of SMEs to the total environmental impacts of industrial is unknown. The most important environmental issues related with aluminum industries are emission of gases, wastewater and solid wastes from aluminum production. In multi-criteria decision making (MCDM) problems in some situations, decision makers (DMs) don't or can't express their preferences obviously. In these situations for decision making, stochastic multi-criteria acceptability analysis (SMAA-2) can be applied. In this study, a multi-criteria decision making model is presented to determine higher priority waste types (air and solid wastes, wastewaters) among the three firms. We used stochastic data by applying and the SMAA-2 results are given.Article Developing a Decision-Support System for Waste Management in Aluminum Production(SPRINGERVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS, 2016) Ozmen, Mihrimah; Aydogan, Emel Kizilkaya; Ates, Nuray; Uzal, Nigmet; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, NigmetIndustrial enterprises constitute a major portion of the world's economy, as well as a large proportion of a country's businesses and total employment. In Turkey, industrial enterprises are underdeveloped in terms of knowledge, skill, capital, and particularly accessing and benefiting from the advantages provided by modern information and communication technologies. Aluminum manufacturing has been reported to be the largest industry in Turkey with respect to production volumes and application fields. However, aluminum production is known to be an important contributor to environmental pollution, and the relative contribution of other related enterprises to the total industrial environmental impact is unknown. Environmental pollution sources can typically be classified into three categories: gaseous emissions, solid wastes, and wastewaters. The types of wastes produced by aluminum production vary based on the process line used, the variety of target products produced, and the production capacity of a given plant. As the capacities of facilities grow, the type and amount of waste become more variable. Therefore, the primary objective of this study is to determine the priority of each waste type in aluminum manufacturing industries. This study was conducted in the Industrial Zone of Kayseri in Turkey. Three different facilities that range in size from large to small based on their production volume, plant capacity, and variety of production are selected for this study. The priority of waste types was determined by combining the AHP and PROMETHEE II multicriteria decision methods. While wastewater was categorized as having the highest priority in large facilities, solid waste was determined to be the highest priority in medium and small facilities.