Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors
Loading...
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY
Abstract
Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Forster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2O3) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d(-1) with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.
Description
The authors gratefully acknowledge the financial support in part from Singapore National Research Foundation under the programs of NRFNRFI2016-08 and the Science and the Singapore Agency for Science, Technology and Research (A*STAR) SERC Pharos Program under Grant No. 152-73-00025 and in part from TUBITAK 115F297, 117E713, and 119N343. H.V.D. also acknowledges support from TUBA. O.E. acknowledges TUBITAK for financial support through the BIDEB-2211 program. The authors also thank Mr. Huseyin Bilge Yagci for his assistance in taking the photocurrent measurements.
Keywords
colloidal nanoplatelets, distance dependency, FRET, nonradiative energy transfer, self-assembly, semiconductor nanocrystals, silicon
Turkish CoHE Thesis Center URL
Citation
WoS Q
Scopus Q
Source
Volume
Volume 17 Issue 41