Normal Mixture Model-Based Clustering of Data Using Genetic Algorithm

dc.contributor.author Gogebakan, Maruf
dc.contributor.author Erol, Hamza
dc.contributor.department AGÜ en_US
dc.contributor.institutionauthor Gogebakan, Maruf
dc.date.accessioned 2023-04-07T08:37:59Z
dc.date.available 2023-04-07T08:37:59Z
dc.date.issued 2020 en_US
dc.description.abstract In this study, a new algorithm was developed for clustering multivariate big data. Normal mixture distributions are used to determine the partitions of variables. Normal mixture models obtained from the partitions of variables are generated using Genetic Algorithms (GA). Each partition in the variables corresponds to a clustering center in the normal mixture model. The best model that fits the data structure from normal mixture models is obtained by using the information criteria obtained from normal mixture distributions. en_US
dc.identifier.endpage 543 en_US
dc.identifier.isbn 978-3-030-36178-5
dc.identifier.isbn 978-3-030-36177-8
dc.identifier.issn 2367-4512
dc.identifier.other WOS:000678771000043
dc.identifier.startpage 539 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-36178-5_43
dc.identifier.uri https://hdl.handle.net/20.500.12573/1572
dc.identifier.volume 43 en_US
dc.language.iso eng en_US
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG en_US
dc.relation.isversionof 10.1007/978-3-030-36178-5_43 en_US
dc.relation.journal ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Genetic Algorithm en_US
dc.subject Gaussian mixture models en_US
dc.subject Model based clustering en_US
dc.subject Information criteria en_US
dc.title Normal Mixture Model-Based Clustering of Data Using Genetic Algorithm en_US
dc.type other en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
NormalMixtureModel-BasedClusteringofDataUsingGeneticAlgorithm1.pdf
Size:
101.28 MB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: