Modification of surface charge characteristics for unsupported nanostructured titania-zirconia UF/NF membrane top layers with calcination temperature
Loading...
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
SPRINGER, ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
Abstract
Ceramic membranes are more advantageous alternatives especially for harsh working conditions when compared with the polymeric membranes. The porous multilayer structure of the ceramic membranes (composed of support, intermediate, and top layers) can be prepared via different oxides. Titania and zirconia, having superior properties, are mainly preferred for the top layer formation. The separation properties of the membrane are both dependent on pore morphology and surface charge of the oxide(s) forming the top layer. The effect of surface charge in separation may be very significant in case of filtration of charged species with relatively lower mass as in the ultrafiltration (UF) and nanofiltration (NF). In this study, unsupported membrane top layers were prepared with varying titania/zirconia ratios by sol-gel technique. Their surface charges at different pH conditions after calcination at varying temperatures (400 degrees, 500 degrees, and 600 degrees C) were determined. The surface charge of the pure titania (full Ti) top layer was decreasing with the increasing calcination temperature. The highest magnitudes of zeta potential for both acidic and basic conditions were measured via Zr rich top layer (TiZr2575) at calcination temperatures >= 500 degrees C, which was composed of anatase, rutile (titania), and tetragonal (zirconia) phases after calcination. The tailor-made top layer can be prepared with modifications during membrane preparation.
Description
Keywords
Surface charge, Calcination, Membrane, Zirconia, Titania
Turkish CoHE Thesis Center URL
Citation
WoS Q
Scopus Q
Source
Volume
Volume: 56 Issue: Pages:
Issue
1
Start Page
203
End Page
215