Lifetime maximization of IoT-enabled smart grid applications using error control strategies

Loading...
Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

ELSEVIER

Abstract

Recently, with the advancement of Internet of Things (IoT) technology, IoT-enabled Smart Grid (SG) applications have gained tremendous popularity. Ensuring reliable communication in IoT-based SG applications is challenging due to the harsh channel environment often encountered in the power grid. Error Control (EC) techniques have emerged as a promising solution to enhance reliability. Nevertheless, ensuring network reliability requires a substantial amount of energy consumption. In this paper, we formulate a Mixed Integer Programming (MIP) model which considers the energy dissipation of EC techniques to maximize IoT network lifetime while ensuring the desired level of IoT network reliability. We develop meta-heuristic approaches such as Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO) to address the high computation complexity of large-scale IoT networks. Performance evaluations indicate that the EC-Node strategy, where each IoT node employs the most energy-efficient EC technique, yields a minimum of 8.9% extended lifetimes compared to the EC-Net strategies, where all IoT nodes employ the same EC method for a communication. Moreover, the PSO algorithm reduces the computational time by 77% while exhibiting a 2.69% network lifetime decrease compared to the optimal solution.

Description

Keywords

Internet of things, Error control, Smart grid, Network lifetime

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

254

Issue

Start Page

1

End Page

10