Thin films of inert metal nanowires for display applications

dc.contributor.author Citir, Murat
dc.contributor.author Sen, Unal
dc.contributor.author Usta, Hakan
dc.contributor.author Canlier, Ali
dc.contributor.authorID 0000-0002-6666-4980 en_US
dc.contributor.authorID 0000-0002-0618-1979 en_US
dc.contributor.authorID 0000-0003-3736-5049 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Citir, Murat
dc.contributor.institutionauthor Sen, Unal
dc.contributor.institutionauthor Usta, Hakan
dc.contributor.institutionauthor Canlier, Ali
dc.date.accessioned 2023-08-16T09:00:05Z
dc.date.available 2023-08-16T09:00:05Z
dc.date.issued 2015 en_US
dc.description.abstract Ag nanowire transparent electrode has excellent transmittance (90%) and sheet resistance (20 Ohm/sq), yet there are slight drawbacks such as optical haze and chemical instability against aerial oxidation. Chemical stability of Ag nanowires needs to be improved in order for it to be suitable for electrode applications. Coating Ag nanowires with a thin layer of inert metals such as Au and Pd through galvanic exchange reactions may enhance the chemical stability of Ag nanowire films highly and also helps to obtain lower haze. In this study, coating of thin Au and Pd layers has been applied successfully onto the surface of Ag nanowires. Usually coatings are carried out by salts such as HAuCl4 and K2PdCl4 in order to make nanotubes. In this study, novel ethylenediamine(en) complexes of inert metal cations with mild oxidation power were prepared in order to oxidize Ag atoms partially on the surface through galvanic displacement. The mild galvanic exchange allowed for a thin layer (1-4 nm) of inert metal coating on the Ag nanowires with minimal truncation of the nanowire, where the average lengths and the diameters were between 10 similar to 14 mu m and 55 similar to 65 nm, respectively. The crystalline structure of the shell was formed epitaxially on the surface. The new Ag nanowires were suspended in methanol and then electrostatically sprayed on glass and flexible substrates. It was revealed that average total transmittance remain around 90% within visible spectrum region (400-800 nm) whereas sheet resistance rises up to 175 Ohm/sq. Very thin layer of inert metal costs low, though this may render an excellent catalyst for applications such as fuel cell and organic synthesis, whereas transparent films of inert metal-coated Ag nanowire can be utilized as working electrodes for spectro-electrochemical cells as well. en_US
dc.identifier.endpage 76 en_US
dc.identifier.isbn 978-80-87294-53-6
dc.identifier.other WOS:000350636300010
dc.identifier.startpage 64 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12573/1726
dc.language.iso eng en_US
dc.publisher TANGER LTD en_US
dc.relation.journal NANOCON 2014, 6TH INTERNATIONAL CONFERENCE en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Transparent electrode en_US
dc.subject Au en_US
dc.subject Pd coated Ag nanowire en_US
dc.subject fuel cell en_US
dc.subject oxidation resistance en_US
dc.subject galvanic exchange en_US
dc.title Thin films of inert metal nanowires for display applications en_US
dc.type conferenceObject en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: