THE EXISTENCE OF POSITIVE SOLUTIONS FOR A SEMIPOSITONE SECOND-ORDER m-POINT BOUNDARY VALUE PROBLEM

dc.contributor.author Dogan, Abdulkadir
dc.contributor.department AGÜ en_US
dc.contributor.institutionauthor Dogan, Abdulkadir
dc.date.accessioned 2023-04-05T09:29:25Z
dc.date.available 2023-04-05T09:29:25Z
dc.date.issued 2015 en_US
dc.description.abstract In this paper, we study the existence of positive solutions to boundary value problem {u '' + lambda f(t,u)=0, t is an element of(0,1); u(0)=Sigma(m-2)(i-1) alpha (i)u(xi(i)), u'(1) = Sigma (m-2)(i=1) beta(i) u'(xi(i)), where xi(i) is an element of(0, 1), 0 < xi(1) < xi(2) < ... < xi(m-2) < 1, alpha(i), beta(i) is an element of[0,infinity), lambda is positive parameter. By using Krasnoserskii's fixed point theorem, we provide sufficient conditions for the existence of at least one positive solution to the above boundary value problem. en_US
dc.identifier.endpage 427 en_US
dc.identifier.issn 1056-2176
dc.identifier.issue 4 en_US
dc.identifier.other WOS:000366947900003
dc.identifier.startpage 419 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12573/1566
dc.identifier.volume 24 en_US
dc.language.iso eng en_US
dc.publisher DYNAMIC PUBLISHERS, INC en_US
dc.relation.journal DYNAMIC SYSTEMS AND APPLICATIONS en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ,,,, en_US
dc.title THE EXISTENCE OF POSITIVE SOLUTIONS FOR A SEMIPOSITONE SECOND-ORDER m-POINT BOUNDARY VALUE PROBLEM en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
dsa-35-10-3.pdf
Size:
254.19 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: