A phenomenological hydrogen induced edge dislocation mobility law for bcc Fe obtained by molecular dynamics
dc.contributor.author | Baltacioglu, Mehmet Furkan | |
dc.contributor.author | Kapci, Mehmet Fazil | |
dc.contributor.author | Schön, J. Christian | |
dc.contributor.author | Marian, Jaime | |
dc.contributor.author | Bal, Burak | |
dc.contributor.authorID | 0000-0002-7389-9155 | en_US |
dc.contributor.authorID | 0000-0001-6476-0429 | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Baltacioglu, Mehmet Furkan | |
dc.contributor.institutionauthor | Kapci, Mehmet Fazil | |
dc.contributor.institutionauthor | Bal, Burak | |
dc.date.accessioned | 2024-12-09T07:44:59Z | |
dc.date.available | 2024-12-09T07:44:59Z | |
dc.date.issued | 2024 | en_US |
dc.description.abstract | Investigating the interaction between hydrogen and dislocations is essential for understanding the origin of hydrogen-related fractures, specifically hydrogen embrittlement (HE). This study investigates the effect of hydrogen on the mobility of ½<111>{110} and ½<111>{112} edge dislocations in body-centered cubic (BCC) iron (Fe). Specifically, molecular dynamics (MD) simulations are conducted at various stress levels and temperatures for hydrogen-free and hydrogen-containing lattices. The results show that hydrogen significantly reduces dislocation velocities due to the pinning effect. Based on the results of MD simulations, phenomenological mobility laws for both types of dislocations as a function of stress, temperature and hydrogen concentration are proposed. Current findings provide a comprehensive model for predicting dislocation behavior in hydrogen-containing BCC lattices, thus enhancing the understanding of HE. Additionally, the mobility laws can be utilized in dislocation dynamics simulations to investigate hydrogen-dislocation interactions on a larger scale, aiding in the design of HE-resilient materials for industrial applications. | en_US |
dc.description.sponsorship | This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 122M754. The authors thank to TUBITAK for their supports. | en_US |
dc.identifier.endpage | 927 | en_US |
dc.identifier.issn | 0360-3199 | |
dc.identifier.startpage | 917 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2024.08.509 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/2400 | |
dc.identifier.volume | 87 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | ELSEVIER | en_US |
dc.relation.isversionof | 10.1016/j.ijhydene.2024.08.509 | en_US |
dc.relation.journal | International Journal of Hydrogen Energy | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.relation.tubitak | 122M754 | |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Hydrogen embrittlement | en_US |
dc.subject | Molecular dynamics | en_US |
dc.subject | Dislocation | en_US |
dc.subject | Mobility law | en_US |
dc.subject | HELP mechanism | en_US |
dc.title | A phenomenological hydrogen induced edge dislocation mobility law for bcc Fe obtained by molecular dynamics | en_US |
dc.type | article | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 1-s2.0-S0360319924036930-main.pdf
- Size:
- 8.26 MB
- Format:
- Adobe Portable Document Format
- Description:
- Makale Dosyası
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: