A phenomenological hydrogen induced edge dislocation mobility law for bcc Fe obtained by molecular dynamics

dc.contributor.author Baltacioglu, Mehmet Furkan
dc.contributor.author Kapci, Mehmet Fazil
dc.contributor.author Schön, J. Christian
dc.contributor.author Marian, Jaime
dc.contributor.author Bal, Burak
dc.contributor.authorID 0000-0002-7389-9155 en_US
dc.contributor.authorID 0000-0001-6476-0429 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Baltacioglu, Mehmet Furkan
dc.contributor.institutionauthor Kapci, Mehmet Fazil
dc.contributor.institutionauthor Bal, Burak
dc.date.accessioned 2024-12-09T07:44:59Z
dc.date.available 2024-12-09T07:44:59Z
dc.date.issued 2024 en_US
dc.description.abstract Investigating the interaction between hydrogen and dislocations is essential for understanding the origin of hydrogen-related fractures, specifically hydrogen embrittlement (HE). This study investigates the effect of hydrogen on the mobility of ½<111>{110} and ½<111>{112} edge dislocations in body-centered cubic (BCC) iron (Fe). Specifically, molecular dynamics (MD) simulations are conducted at various stress levels and temperatures for hydrogen-free and hydrogen-containing lattices. The results show that hydrogen significantly reduces dislocation velocities due to the pinning effect. Based on the results of MD simulations, phenomenological mobility laws for both types of dislocations as a function of stress, temperature and hydrogen concentration are proposed. Current findings provide a comprehensive model for predicting dislocation behavior in hydrogen-containing BCC lattices, thus enhancing the understanding of HE. Additionally, the mobility laws can be utilized in dislocation dynamics simulations to investigate hydrogen-dislocation interactions on a larger scale, aiding in the design of HE-resilient materials for industrial applications. en_US
dc.description.sponsorship This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 122M754. The authors thank to TUBITAK for their supports. en_US
dc.identifier.endpage 927 en_US
dc.identifier.issn 0360-3199
dc.identifier.startpage 917 en_US
dc.identifier.uri https://doi.org/10.1016/j.ijhydene.2024.08.509
dc.identifier.uri https://hdl.handle.net/20.500.12573/2400
dc.identifier.volume 87 en_US
dc.language.iso eng en_US
dc.publisher ELSEVIER en_US
dc.relation.isversionof 10.1016/j.ijhydene.2024.08.509 en_US
dc.relation.journal International Journal of Hydrogen Energy en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.relation.tubitak 122M754
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hydrogen embrittlement en_US
dc.subject Molecular dynamics en_US
dc.subject Dislocation en_US
dc.subject Mobility law en_US
dc.subject HELP mechanism en_US
dc.title A phenomenological hydrogen induced edge dislocation mobility law for bcc Fe obtained by molecular dynamics en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0360319924036930-main.pdf
Size:
8.26 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: