Antibacterial type-II InP/ZnO quantum dots via multimodal reactive oxygen species

dc.contributor.author Khan, Saad Ullah
dc.contributor.author Eren, Guncem Ozgun
dc.contributor.author Atac, Nazli
dc.contributor.author Onal, Asim
dc.contributor.author Qureshi, Mohammad Haroon
dc.contributor.author Cooper, Francis Korshe
dc.contributor.author Almammadov, Toghru
dc.contributor.author Kolemen, Safacan
dc.contributor.author Sahin, Mehmet
dc.contributor.author Can, Fusun
dc.contributor.author Nizamoglu, Sedat
dc.contributor.authorID 0000-0002-9419-1711 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Sahin, Mehmet
dc.date.accessioned 2024-02-19T07:18:10Z
dc.date.available 2024-02-19T07:18:10Z
dc.date.issued 2024 en_US
dc.description.abstract The emergence of multidrug-resistant bacteria as a global health threat has necessitated the exploration of alternative treatments to combat bacterial infections. Among these, photocatalytic nanomaterials such as quantum dots (QDs) have shown great promise and type-I QDs have been investigated thus far. In this study, we introduce type-II InP/ZnO core/shell QDs that are ligand-exchanged with a short-chain inorganic sulfide ion (S2-) for antibacterial activity. Interestingly, InP/ZnO QDs simultaneously generate reactive oxygen species (ROS) including hydroxyl (center dot OH) and superoxide (O-2(center dot-) ) radicals, while only O-2(center dot-) radicals can be released by the type-I sulfide-capped InP/ZnS QDs. The optimized nanostructure achieved effective inhibition of Pseudomonas aeruginosa and Escherichia coli bacteria growth to the level of 99.99% and 70.31% under low-intensity green light illumination of 5 mW.cm(-2). Our findings highlight the importance of type-II QDs as a new avenue for developing effective antibacterial agents against drug-resistant pathogens. en_US
dc.description.sponsorship This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SKŁODOWSKA-CURIE grant agreement No. 955664 (STIMULUS). en_US
dc.identifier.endpage 10 en_US
dc.identifier.issn 1385-8947
dc.identifier.issn 1873-3212
dc.identifier.other WOS:001143942600001
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.cej.2023.148140
dc.identifier.uri https://hdl.handle.net/20.500.12573/1950
dc.identifier.volume 480 en_US
dc.language.iso eng en_US
dc.publisher ELSEVIER SCIENCE SA en_US
dc.relation.isversionof 10.1016/j.cej.2023.148140 en_US
dc.relation.journal CHEMICAL ENGINEERING JOURNAL(CEJ) en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Quantum dot en_US
dc.subject Antibacterial en_US
dc.subject Type-II en_US
dc.subject InP en_US
dc.subject Reactive oxygen species en_US
dc.subject ROS en_US
dc.subject Pseudomonas aeruginosa en_US
dc.subject Escherichia coli en_US
dc.subject ZnO en_US
dc.subject ZnS en_US
dc.title Antibacterial type-II InP/ZnO quantum dots via multimodal reactive oxygen species en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1385894723068729-main.pdf
Size:
4.64 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: