Experimental Determination of Interfacial Energies for Solid Sn in Equilibrium with Sn-Mg-Zn Liquid

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

KOREAN INST METALS MATERIALS

Abstract

The equilibrated grain boundary groove shapes of solid Sn in equilibrium with Sn-Mg-Zn liquid were observed from a quenched sample by using a radial heat flow apparatus. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of solid Sn were determined from the observed grain boundary groove shapes. The thermal conductivity of the eutectic solid phase for Sn-8.12 at% Mg-4.97 at% Zn alloy and the thermal conductivity ratio of the liquid phase to the solid phase for Sn-8.12 at% Mg-4.97 at% Zn alloy at eutectic temperature were also measured with a radial heat flow apparatus and a Bridgman-type growth apparatus, respectively. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of solid Sn in equilibrium with Sn-Mg-Zn liquid were determined to be (8.3 ± 0.6)×10-8 Km, (118.5 ± 14.2)×10-3 J m-2 and (225.1 ± 29.3)×10-3 J m-2 respectively from observed grain boundary groove shapes. A comparison of present results for solid Sn in the Sn-8.12 at% Mg-4.97 at% Zn alloy with the results obtained in previous works for similar solid Sn in equilibrium with different binary or ternary liquid was made.

Description

Keywords

thermal analysis, thernal conductivity, interfaces, alloys, solidification

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

21

Issue

2

Start Page

286

End Page

294