ROI Detection in Mammogram Images using Wavelet-Based Haralick and HOG Features

dc.contributor.author Tasdemir, Sena Busra Yengec
dc.contributor.author Tasdemir, Kasim
dc.contributor.author Aydin, Zafer
dc.contributor.authorID 0000-0003-4542-2728 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Mühendislik Bilimleri Bölümü en_US
dc.date.accessioned 2021-05-24T09:01:46Z
dc.date.available 2021-05-24T09:01:46Z
dc.date.issued 2018 en_US
dc.description.abstract Digital mammography is a widespread medical imaging technique that is used for early detection and diagnosis of breast cancer. Detecting the region of interest (ROI) helps to locate the abnormal areas, which may be analyzed further by a radiologist or a CAD system. In this paper, a new classification method is proposed for ROI detection in mammography images. Features are extracted using Wavelet transform, Haralick and HOG descriptors. To reduce the number of dimensions and eliminate irrelevant features, a wrapper-based feature selection method is implemented. Several feature extraction methods and machine learning classifiers are compared by performing a leave-one-image-out cross-validation experiment on a difficult dataset. The proposed feature extraction method provides the best accuracy of 87.5% and the second-best area under curve (AUC) score of 84% when employed in a random forest classifier. en_US
dc.description.sponsorship IEEE; Assoc Machine Learning & Applicat en_US
dc.identifier.endpage 109 en_US
dc.identifier.isbn 978-1-5386-6805-4
dc.identifier.startpage 105 en_US
dc.identifier.uri https://doi.org/10.1109/ICMLA.2018.00023
dc.identifier.uri https://hdl.handle.net/20.500.12573/739
dc.language.iso eng en_US
dc.publisher IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA en_US
dc.relation.isversionof 10.1109/ICMLA.2018.00023 en_US
dc.relation.journal 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA) en_US
dc.relation.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Random Forest Classifier en_US
dc.subject Wavelet Decomposition en_US
dc.subject Haralick Features en_US
dc.subject ROI detection en_US
dc.title ROI Detection in Mammogram Images using Wavelet-Based Haralick and HOG Features en_US
dc.type conferenceObject en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ROI Detection in Mammogram Images using Wavelet-Based Haralick and HOG Features.pdf
Size:
542.47 KB
Format:
Adobe Portable Document Format
Description:
Konferans Ögesi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: