Population Specific Classification of Colorectal Cancer with Meta-Analysis of Metagenomic Data
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Abstract
Yeni nesil dizilemedeki ve "-omik"
teknolojilerdeki gelişmeler, insan bağırsak mikrobiyomunu
karakterize etmeyi mümkün kılmaktadır. Bu
mikroorganizmaların bazıları bağışıklık sistemimizin temel
düzenleyicileriyken, mikrobiyotanın modülasyonu çeşitli
hastalıklara yol açar. Dünya çapında üçüncü yaygın kanser türü
olan kolorektal kanser (KRK), genetik mutasyonlar, çevresel
koşullar ve bağırsak mikrobiyotasındaki anomalilerin etkisiyle
oluşmaktadır. Bu çalışma, tür seviyesinde metagenomik veri
setleri üzerinde çeşitli makine öğrenmesi yöntemleri kullanarak
farklı popülasyonlar için meta-analiz gerçekleştirmeyi; bu
sayede KRK teşhisine yardımcı olabilecek sınıflandırma
modelleri oluşturmayı amaçlamaktadır. Bu çalışmada, 8 farklı
ülke ve 9 farklı metagenomik veri seti üzerinde popülasyon içi,
popülasyonlar arası ve leave one dataset out (LODO) yöntemi
kullanılarak 3 farklı meta-analiz gerçekleştirilmiştir. KRK
teşhisine yardımcı model geliştirirken 4 farklı sınıflandırma
algoritması (Rastgele Orman (RF), Logitboost, Adaboost ve
Karar Agaci (DT)) kullanılmaktadır. Yapılan deneylerde en
üstün performans olarak, popülasyonlar arası performans
değerlendirmesinde eğitim veri seti için JP ve test veri seti için
JPN popülasyonları kullanıldığında Random Forest algoritması
ile 0.98 AUC elde etmiştir.
Advances in next-generation sequencing and "- omics" technologies makes it possible to characterize the human gut microbiome. While some of these microorganisms are important regulators of our immune system, modulation of the microbiota leads to a variety of diseases. Colorectal cancer (CRC), the third most common cancer worldwide, is caused by genetic mutations, environmental conditions, and abnormalities in the gut microbiota. Using various machine learning methods and meta-analysis techniques, this study aims to build a classification model that can help in CRC diagnosis by analyzing metagenomic datasets of different populations obtained at the species level. Using 8 different countries and 9 different metagenomic datasets, 3 different meta-analyzes are performed: within-population, cross-population, and one population is selected for testing and the rest is used as a training dataset (LODO). For CRC classification, 4 different classification algorithms (Random Forest (RF), Logitboost, Adaboost, and Decision Tree (DT)) are used. The best performance among these methods was obtained with the Random Forest algorithm with an AUC of 0.98 by using JP for the training data set and JPN populations for the test data set in the cross-population performance evaluation.
Advances in next-generation sequencing and "- omics" technologies makes it possible to characterize the human gut microbiome. While some of these microorganisms are important regulators of our immune system, modulation of the microbiota leads to a variety of diseases. Colorectal cancer (CRC), the third most common cancer worldwide, is caused by genetic mutations, environmental conditions, and abnormalities in the gut microbiota. Using various machine learning methods and meta-analysis techniques, this study aims to build a classification model that can help in CRC diagnosis by analyzing metagenomic datasets of different populations obtained at the species level. Using 8 different countries and 9 different metagenomic datasets, 3 different meta-analyzes are performed: within-population, cross-population, and one population is selected for testing and the rest is used as a training dataset (LODO). For CRC classification, 4 different classification algorithms (Random Forest (RF), Logitboost, Adaboost, and Decision Tree (DT)) are used. The best performance among these methods was obtained with the Random Forest algorithm with an AUC of 0.98 by using JP for the training data set and JPN populations for the test data set in the cross-population performance evaluation.
Description
Keywords
Kolorektal kanser, metagenomik; sınıflandırma, meta analiz, bağırsak mikrobiyotası, Colorectal cancer, metagenomic, classification, meta-analysis, gut microbiota
Turkish CoHE Thesis Center URL
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
1
End Page
5