Template Scoring Methods for Protein Torsion Angle Prediction

dc.contributor.author Aydin, Zafer
dc.contributor.author Baker, David
dc.contributor.author Noble, William Stafford
dc.contributor.author Fred, A
dc.contributor.author Gamboa, H
dc.contributor.author Elias, D
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Aydin, Zafer
dc.date.accessioned 2023-08-15T08:51:43Z
dc.date.available 2023-08-15T08:51:43Z
dc.date.issued 2015 en_US
dc.description Meeting:8th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC) Location:Lisbon, PORTUGAL Date:JAN 12-15, 2015 en_US
dc.description.abstract Prediction of backbone torsion angles provides important constraints about the 3D structure of a protein and is receiving a growing interest in the structure prediction community. In this paper, we introduce a three-stage machine learning classifier to predict the 7-state torsion angles of a protein. The first two stages employ dynamic Bayesian and neural networks to produce an ab-initio prediction of torsion angle states starting from sequence profiles. The third stage is a committee classifier, which combines the ab-initio prediction with a structural frequency profile derived from templates obtained by HHsearch. We develop several structural profile models and obtain significant improvements over the Laplacian scoring technique through: (1) scaling templates by integer powers of sequence identity score, (2) incorporating other alignment scores as multiplicative factors (3) adjusting or optimizing parameters of the profile models with respect to the similarity interval of the target. We also demonstrate that the torsion angle prediction accuracy improves at all levels of target-template similarity even when templates are distant from the target. The improvement is at significantly higher rates as template structures gradually get closer to target. en_US
dc.description.sponsorship Inst Syst & Technologies Informat, Control & Commun; ACM Special Interest Grp Bioinformat, Computat Biol, & Biomed Informat; ACM Special Interest Grp Artificial Intelligence; ACM Special Interest Grp Management Informat Syst; EUROMICRO; Int Soc Telemedicine & eHealth; Assoc Advancement Artificial Intelligence; European Assoc Signal Proc; Biomed Engn Soc; European Soc Engn & Med; IEEE Engn Med & Biol Soc en_US
dc.identifier.endpage 223 en_US
dc.identifier.isbn 978-3-319-27706-6
dc.identifier.isbn 978-3-319-27707-3
dc.identifier.issn 1865-0929
dc.identifier.other WOS:000370811800013
dc.identifier.startpage 206 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-319-27707-3_13
dc.identifier.uri https://hdl.handle.net/20.500.12573/1709
dc.identifier.volume 574 en_US
dc.language.iso eng en_US
dc.publisher SPRINGER en_US
dc.relation.isversionof 10.1007/978-3-319-27707-3_13 en_US
dc.relation.journal BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2015 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Torsion Angle en_US
dc.subject Torsion Class en_US
dc.subject Position Specific Score Matrix en_US
dc.subject Structural Profile en_US
dc.subject Similarity Interval en_US
dc.title Template Scoring Methods for Protein Torsion Angle Prediction en_US
dc.type conferenceObject en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
978-3-319-27707-3.pdf
Size:
502.17 KB
Format:
Adobe Portable Document Format
Description:
Konferans Öğesi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: