Integrative analyses in omics data: Machine learning perspective

dc.contributor.author Yazici, Miray Unlu
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.author Yousef, Malik
dc.contributor.authorID 0000-0001-8165-6164 en_US
dc.contributor.authorID 0000-0002-2272-6270 en_US
dc.contributor.department AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü en_US
dc.contributor.institutionauthor Yazici, Miray Unlu
dc.contributor.institutionauthor Bakir-Gungor, Burcu
dc.date.accessioned 2024-07-05T11:49:28Z
dc.date.available 2024-07-05T11:49:28Z
dc.date.issued 2023 en_US
dc.description.abstract Developments in the high throughput technologies have enabled the production of an immense amount of knowledge at the multi-omics level. Considering complex diseases which are affected by multi-factors, single omics datasets might not be sufficient to unveil the molecular mechanisms of heterogeneous diseases. Providing a comprehensive and systematic overview to explain disease hallmarks in significant depth is critical. Utilizing multi-omics datasets has led to the development of a variety of tools and platforms. Machine learning models are utilized in a wide variety of tools to tackle the complexity of disorders and to identify new biomolecular signatures and potential markers. Underlying aspects of these approaches are based on training the models for making predictions and classification of the given data. In this review, we describe current machine learning-based approaches and available implementations. Challenges in the enlightenment of disease mechanisms of onset and progression and future development of the field of medicine will be discussed. The prominence of biological interpretation of model output with corresponding biological knowledge will be also covered in this review. en_US
dc.identifier.issn 1860-8779
dc.identifier.uri https://dx.doi.org/10.3205/mibe000244
dc.identifier.uri https://hdl.handle.net/20.500.12573/2254
dc.identifier.volume 19 en_US
dc.language.iso eng en_US
dc.publisher Deutsche Gesellschaft fur Medizinische Informatik, Biometrie und Epidemiologie e.V. en_US
dc.relation.isversionof 10.3205/mibe000244 en_US
dc.relation.journal Deutsche Gesellschaft fur Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Integrative analyses in omics data: Machine learning perspective en_US
dc.type conferenceObject en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: