Investigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine blade

dc.contributor.author Arslan, Sibel
dc.contributor.author Koca, Kemal
dc.contributor.authorID 0000-0003-2464-6466 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Koca, Kemal
dc.date.accessioned 2023-06-06T08:44:55Z
dc.date.available 2023-06-06T08:44:55Z
dc.date.issued 2023 en_US
dc.description.abstract Automatic programming (AP) is a subfield of artificial intelligence (AI) that can automatically generate computer programs and solve complex engineering problems. This paper presents the accuracy of four different AP methods in predicting the aerodynamic coefficients and power efficiency of the AH 93-W-145 wind turbine blade at different Reynolds numbers and angles of attack. For the first time in the literature, Genetic Programming (GP) and Artificial Bee Colony Programming (ABCP) methods are used for such predictions. In addition, Airfoil Tools and JavaFoil are utilized for airfoil selection and dataset generation. The Reynolds number and angle of attack of the wind turbine airfoil are input parameters, while the coefficients CL, CD and power efficiency are output parameters. The results show that while all four methods tested in the study accurately predict the aerodynamic coefficients, Multi Gene GP (MGGP) method achieves the highest accuracy for R2Train and R2Test (R2 values in CD Train: 0.997-Test: 0.994, in CL Train: 0.991-Test: 0.990, in PE Train: 0.990-Test: 0.970). By providing the most precise model for properly predicting the aerodynamic performance of higher cambered wind turbine airfoils, this innovative and comprehensive study will close a research gap. This will make a significant contribution to the field of AI and aerodynamics research without experimental cost, labor, and additional time. en_US
dc.identifier.endpage 15 en_US
dc.identifier.issn 0952-1976
dc.identifier.issn 1873-6769
dc.identifier.issue A en_US
dc.identifier.other WOS:000969649600001
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.engappai.2023.106210
dc.identifier.uri https://hdl.handle.net/20.500.12573/1607
dc.identifier.volume 123 en_US
dc.language.iso eng en_US
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD en_US
dc.relation.isversionof 10.1016/j.engappai.2023.106210 en_US
dc.relation.journal ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Automatic programming en_US
dc.subject Genetic programming en_US
dc.subject Artificial bee colony programming en_US
dc.subject Aerodynamic coefficients en_US
dc.subject Power efficiency en_US
dc.subject Wind turbine blade en_US
dc.title Investigating the best automatic programming method in predicting the aerodynamic characteristics of wind turbine blade en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0952197623003949-main.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: