ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL p-LAPLACIAN BOUNDARY VALUE PROBLEMS ON TIME SCALES

dc.contributor.author Dogan, Abdulkadir
dc.contributor.department AGÜ en_US
dc.contributor.institutionauthor Dogan, Abdulkadir
dc.date.accessioned 2023-04-04T06:11:53Z
dc.date.available 2023-04-04T06:11:53Z
dc.date.issued 2015 en_US
dc.description.abstract In this paper, we study the following p-Laplacian boundary value problems on time scales {(phi(p)(u(Delta)(t)))(del) + a(t)f(t, u(t), u(Delta)(t)) = 0, t is an element of [0,T](T), u(0) - B-0(u(Delta)(0)) = 0, u(Delta)(T) = 0, where phi(p)(u) = vertical bar u vertical bar(p-2)u, for p > 1. We prove the existence of triple positive solutions for the one-dimensional p-Laplacian boundary value problem by using the Leggett-Williams fixed point theorem. The interesting point in this paper is that the non-linear term f is involved with first-order derivative explicitly. An example is also given to illustrate the main result. en_US
dc.identifier.endpage 303 en_US
dc.identifier.issn 1056-2176
dc.identifier.issn 1879-0224
dc.identifier.issue 3 en_US
dc.identifier.other WOS:000366947700005
dc.identifier.startpage 295 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12573/1552
dc.identifier.volume 24 en_US
dc.language.iso eng en_US
dc.publisher DYNAMIC PUBLISHERS, INC en_US
dc.relation.journal DYNAMIC SYSTEMS AND APPLICATIONS en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject BVPS en_US
dc.subject DYNAMIC EQUATIONS en_US
dc.title ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL p-LAPLACIAN BOUNDARY VALUE PROBLEMS ON TIME SCALES en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
23-DSA-295-304.pdf
Size:
130.45 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: