Combining Classifiers for Protein Secondary Structure Prediction

dc.contributor.author Aydin, Zafer
dc.contributor.author Uzut, Ommu Gulsum
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.date.accessioned 2021-08-02T07:04:44Z
dc.date.available 2021-08-02T07:04:44Z
dc.date.issued 2017 en_US
dc.description All computations were performed on TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA Resources). This work is supported by grant 113E550 from 3501 TUBITAK National Young Researchers Career Award. en_US
dc.description.abstract Protein secondary structure prediction is an important step in estimating the three dimensional structure of proteins. Among the many methods developed for predicting structural properties of proteins, hybrid classifiers and ensembles that combine predictions from several models are shown to improve the accuracy rates. In this paper, we train, optimize and combine a support vector machine, a deep convolutional neural field and a random forest in the second stage of a hybrid classifier for protein secondary structure prediction. We demonstrate that the overall accuracy of the proposed ensemble is comparable to the success rates of the state-of-the-art methods in the most difficult prediction setting and combining the selected models have the potential to further improve the accuracy of the base learners. en_US
dc.description.sponsorship Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 113E550 3501 en_US
dc.identifier.endpage 33 en_US
dc.identifier.isbn 978-1-5090-5001-7
dc.identifier.issn 2375-8244
dc.identifier.startpage 29 en_US
dc.identifier.uri https://doi.org/10.1109/CICN.2017.9
dc.identifier.uri https://hdl.handle.net/20.500.12573/890
dc.language.iso eng en_US
dc.publisher IEEE345 E 47TH ST, NEW YORK, NY 10017 USA en_US
dc.relation.isversionof 10.1109/CICN.2017.9 en_US
dc.relation.journal 9th International Conference on Computational Intelligence and Communication Networks (CICN) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.relation.tubitak 113E550
dc.relation.tubitak 3501
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject deep learning en_US
dc.subject ensemble methods en_US
dc.subject hybrid classifiers en_US
dc.subject protein secondary structure prediction en_US
dc.subject bioinformatics en_US
dc.title Combining Classifiers for Protein Secondary Structure Prediction en_US
dc.type conferenceObject en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: