Effect of Recursive Cluster Elimination with Different Clustering Algorithms Applied to Gene Expression Data
dc.contributor.author | Kuzudisli, Cihan | |
dc.contributor.author | Bakir-Gungor, Burcu | |
dc.contributor.author | Qaqish, Bahjat F. | |
dc.contributor.author | Yousef, Malik. | |
dc.contributor.authorID | 0000-0002-2272-6270 | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Bakir-Gungor, Burcu | |
dc.date.accessioned | 2024-04-15T12:40:26Z | |
dc.date.available | 2024-04-15T12:40:26Z | |
dc.date.issued | 2023 | en_US |
dc.description.abstract | Feature selection (FS) is an effective tool in dealing with high dimensionality and reducing computational cost. Support Vector Machines – Recursive Cluster Elimination (SVM-RCE) is one of several algorithms that have been developed for FS in high dimensional data. SVM-RCE involves a clustering step which originally is k-means. Using various performance metrics, three alternative algorithms are evaluated in this context; k-medoids, Hierarchical Clustering (HC), and Gaussian Mixture Model (GMM). Comparisons will be carried out on five publicly available gene expression datasets. The results show that k-means in SVM-RCE obtains higher performance than other tested algorithms in terms of classification performance. Additionally, HC shows a similar performance to k-means. Our findings show superiority of using k-means. This study can contribute to the development of SVMRCE with different variations, leading to decrease in the number of selected genes, and an increase in prediction performance. | en_US |
dc.identifier.endpage | 4 | en_US |
dc.identifier.isbn | 979-835030659-0 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1109/ASYU58738.2023.10296734 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/2086 | |
dc.language.iso | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.isversionof | 10.1109/ASYU58738.2023.10296734 | en_US |
dc.relation.journal | 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Recursive Cluster Elimination | en_US |
dc.subject | Feature Selection | en_US |
dc.subject | Clustering | en_US |
dc.subject | Gene Expression Data Analysis | en_US |
dc.title | Effect of Recursive Cluster Elimination with Different Clustering Algorithms Applied to Gene Expression Data | en_US |
dc.type | conferenceObject | en_US |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Effect_of_Recursive_Cluster_Elimination_with_Different_Clustering_Algorithms_Applied_to_Gene_Expression_Data.pdf
- Size:
- 247.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- Konferans Ögesi
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description: