Effect of Recursive Cluster Elimination with Different Clustering Algorithms Applied to Gene Expression Data

dc.contributor.author Kuzudisli, Cihan
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.author Qaqish, Bahjat F.
dc.contributor.author Yousef, Malik.
dc.contributor.authorID 0000-0002-2272-6270 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Bakir-Gungor, Burcu
dc.date.accessioned 2024-04-15T12:40:26Z
dc.date.available 2024-04-15T12:40:26Z
dc.date.issued 2023 en_US
dc.description.abstract Feature selection (FS) is an effective tool in dealing with high dimensionality and reducing computational cost. Support Vector Machines – Recursive Cluster Elimination (SVM-RCE) is one of several algorithms that have been developed for FS in high dimensional data. SVM-RCE involves a clustering step which originally is k-means. Using various performance metrics, three alternative algorithms are evaluated in this context; k-medoids, Hierarchical Clustering (HC), and Gaussian Mixture Model (GMM). Comparisons will be carried out on five publicly available gene expression datasets. The results show that k-means in SVM-RCE obtains higher performance than other tested algorithms in terms of classification performance. Additionally, HC shows a similar performance to k-means. Our findings show superiority of using k-means. This study can contribute to the development of SVMRCE with different variations, leading to decrease in the number of selected genes, and an increase in prediction performance. en_US
dc.identifier.endpage 4 en_US
dc.identifier.isbn 979-835030659-0
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1109/ASYU58738.2023.10296734
dc.identifier.uri https://hdl.handle.net/20.500.12573/2086
dc.language.iso eng en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.isversionof 10.1109/ASYU58738.2023.10296734 en_US
dc.relation.journal 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Recursive Cluster Elimination en_US
dc.subject Feature Selection en_US
dc.subject Clustering en_US
dc.subject Gene Expression Data Analysis en_US
dc.title Effect of Recursive Cluster Elimination with Different Clustering Algorithms Applied to Gene Expression Data en_US
dc.type conferenceObject en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Effect_of_Recursive_Cluster_Elimination_with_Different_Clustering_Algorithms_Applied_to_Gene_Expression_Data.pdf
Size:
247.1 KB
Format:
Adobe Portable Document Format
Description:
Konferans Ögesi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: