miRcorrNetPro: Unraveling Algorithmic Insights through Cross-Validation in Multi-Omics Integration for Comprehensive Data Analysis

dc.contributor.author Yazici, Miray Unlu
dc.contributor.author Yousef, Malik
dc.contributor.author Marron J.S.
dc.contributor.author Bakir-Gungor, Burcu
dc.contributor.authorID 0000-0001-8165-6164 en_US
dc.contributor.authorID 0000-0002-2272-6270 en_US
dc.contributor.department AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü en_US
dc.contributor.institutionauthor Yazici, Miray Unlu
dc.contributor.institutionauthor Bakir-Gungor, Burcu
dc.date.accessioned 2024-04-15T08:16:53Z
dc.date.available 2024-04-15T08:16:53Z
dc.date.issued 2023 en_US
dc.description.abstract High throughput -omics technologies facilitate the investigation of regulatory mechanisms of complex diseases. Along this line, scientists develop promising tools and methods to extend our understanding at the molecular and functional levels. To this end, miRcorrNet tool performs integrative analysis of microRNA (miRNA) and gene expression profiles via machine learning (ML) approach to identify significant miRNA groups and their associated target genes. In this study, we propose miRcorrNetPro tool, which extends miRcorrNet by tracking group scoring, ranking and other information through the cross-validation iterations. Heatmap visualizations enable deep novel insights into the collective behavior of clusters of groups in cellular signaling and hence facilitate detection of potential biomarkers for the disease under investigation. Although miRcorrNetPro is designed as a generic tool, here we present our findings and potential miRNA biomarkers for Breast Cancer (BRCA). The miRcorrNetPro tool and all other supplementary files are available at https://github.com/MirayUnlu/miRcorrNetPro. en_US
dc.description.sponsorship NSF en_US
dc.identifier.endpage 3240 en_US
dc.identifier.isbn 979-835033748-8
dc.identifier.startpage 3234 en_US
dc.identifier.uri https://doi.org/10.1109/BIBM58861.2023.10385425
dc.identifier.uri https://hdl.handle.net/20.500.12573/2078
dc.language.iso eng en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.isversionof 10.1109/BIBM58861.2023.10385425 en_US
dc.relation.journal Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Multi-omics Integration en_US
dc.subject microRNAs en_US
dc.subject Machine Learning en_US
dc.subject Breast Cancer en_US
dc.title miRcorrNetPro: Unraveling Algorithmic Insights through Cross-Validation in Multi-Omics Integration for Comprehensive Data Analysis en_US
dc.type conferenceObject en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
miRcorrNetPro_Unraveling_Algorithmic_Insights_through_Cross-Validation_in_Multi-Omics_Integration_for_Comprehensive_Data_Analysis.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Konferans Ögesi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: