A Top-Down Approach for Finding Affected Pathway Subnetworks in Type 2 Diabetes
Loading...
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Abstract
Diyabet (Diabetes Mellitus, DM), insülin üreten
pankreas beta hücrelerindeki fonksiyon bozukluğu, insülin direnci
veya insülinin işlevselliğinin bozulması ile meydana gelen bir tür
metabolik bozukluktur. Diyabet vakalarının %90'ını oluşturan
Tip 2 Diyabet (T2D) ise, çok faktörlü karmaşık bir hastalıktır. Son
yıllarda, genom boyu ilişkilendirme (genome-wide association,
GWA) analizleri ile, T2D riski ile ilişkili genetik varyantlar
başarıyla tespit edilmiştir. Ancak, geleneksel GWA çalışmaları
buzdağının görünen kısmındaki tek nükleotid polimorfizmlerine
(SNPs) odaklanırken, bu çalışmalarda tespit edilememiş
varyasyonların ortaya çıkarılması için, GWA çalışmaları
sonrasında yeni analiz yöntemlerine ihtiyaç vardır. Önceki
çalışmamızda, insan protein-protein etkileşim ağını, bilinen
biyolojik yolakları ve potansiyel SNP’leri beraber analiz ederek,
hastalıkla ilişkili markör yolakları belirleyen bir GWA çalışması
sonrası analiz metodolojisi geliştirmiştik. Bu çalışmada,
geliştirdiğimiz bu yöntemin üzerine farklı in-siliko yaklaşımları
ekleyerek, T2D’de etkilenen protein alt ağlarına ilaveten, yolak alt
ağlarını bulmayı ve sonuç olarak T2D ile ilişkili moleküler
mekanizmaların aydınlatılmasını hedefledik. Geliştirdiğimiz bu
yöntemle, 12.931 hasta ve 57.196 sağlıklı bireyi içeren T2D GWA
çalışması meta analiz verisini analiz ettik. Burada sunduğumuz
yaklaşım hem etkilenen yolağın önem derecesini hem de yolağın
komşu yolaklarla topolojik ilişkisini temel alır. Yöntemimizin
fonksiyonel zenginleştirme aşamasında, hipergeometrik test ile
önemli yolaklar elde edilmiş ve gen-yolak matrisi oluşturulmuştur.
Daha sonra yolak-yolak benzerlik ilişkisi Jakard indeksi
kullanılarak hesaplanmıştır. Bu benzerlik matrisinden elde edilen
skorlar kullanılarak yolak-yolak ağı oluşturulmuş ve alt ağ arama
algoritmaları ile hastalıkla ilişkili yolak modülleri elde edilmiştir.
Sonuç olarak, T2D oluşumunda potansiyel rolü olabilecek gen,
yolak alt ağları belirlenmiş, etkilenen yolakların ilişkili olduğu
kategoriler ve sınıflar tespit edilmiştir.
Diabetes Mellitus (DM) is a metabolic disorder caused by dysfunction of insulin-producing pancreatic beta cells, insulin resistance, or impairment of insulin functionality. Type 2 Diabetes Mellitus (T2D) is a complex multifactorial disease that accounts for 90% of diabetes cases. In recent years, genome-wide association studies (GWAS) have successfully identified genetic variants associated with T2D risk. However, while conventional GWAS analyses focus on ‘the tip of the iceberg’ single nucleotide polymorphisms (SNPs), new analysis methods are needed to uncover hidden variations in these studies. In our previous study, we developed a post-GWAS analysis methodology to find diseaseassociated marker pathways by integrating human proteinprotein interaction network, known biological pathways and potential SNPs. In this study, via adding different in-silico approaches to our methodology, we aim to identify affected pathway subnetworks and affected pathway clusters in addition to the affected protein subnetworks in T2D, and consequently to enlighten molecular mechanisms of T2D. Using this proposed method, we analyzed T2D GWAS meta-analysis data including 12.931 cases ve 57.196 controls. The approach we presented here is based on both the significance value of affected pathway and its topological relationship with other neighbor pathways. In the functional enrichment stage of our method, important pathways were obtained using hypergeometric test and gene-pathway matrix was formed. Then pathway-pathway similarity values were calculated using Jaccard index. Using the scores obtained in the similarity matrix, pathway-pathway network was constructed, and disease-related pathway modules were obtained using subnetwork search algorithms. As a result, genes, pathways and pathway subnetworks that might have a potential role in T2D development were identified, and the categories and classes that are related with these affected pathways were determined.
Diabetes Mellitus (DM) is a metabolic disorder caused by dysfunction of insulin-producing pancreatic beta cells, insulin resistance, or impairment of insulin functionality. Type 2 Diabetes Mellitus (T2D) is a complex multifactorial disease that accounts for 90% of diabetes cases. In recent years, genome-wide association studies (GWAS) have successfully identified genetic variants associated with T2D risk. However, while conventional GWAS analyses focus on ‘the tip of the iceberg’ single nucleotide polymorphisms (SNPs), new analysis methods are needed to uncover hidden variations in these studies. In our previous study, we developed a post-GWAS analysis methodology to find diseaseassociated marker pathways by integrating human proteinprotein interaction network, known biological pathways and potential SNPs. In this study, via adding different in-silico approaches to our methodology, we aim to identify affected pathway subnetworks and affected pathway clusters in addition to the affected protein subnetworks in T2D, and consequently to enlighten molecular mechanisms of T2D. Using this proposed method, we analyzed T2D GWAS meta-analysis data including 12.931 cases ve 57.196 controls. The approach we presented here is based on both the significance value of affected pathway and its topological relationship with other neighbor pathways. In the functional enrichment stage of our method, important pathways were obtained using hypergeometric test and gene-pathway matrix was formed. Then pathway-pathway similarity values were calculated using Jaccard index. Using the scores obtained in the similarity matrix, pathway-pathway network was constructed, and disease-related pathway modules were obtained using subnetwork search algorithms. As a result, genes, pathways and pathway subnetworks that might have a potential role in T2D development were identified, and the categories and classes that are related with these affected pathways were determined.
Description
Keywords
tek nükleotid polimorfizmi (SNP), genom boyu ilişkilendirme analizi (GWAS), yolak alt ağı, tip 2 diyabet., single nucleotide polymorphism (SNP), genomewide association study (GWAS), pathway subnetwork, type 2 diabetes