Comparison of NR and UniClust Databases for Protein Secondary Structure Prediction

Abstract

Proteinlerin üç boyutlu yapılarının tahmin edilmesi teorik kimya ve biyoenformatik için önemli problemlerden biridir. Üç boyutlu yapı tahminin en önemli aşamalarından biri ise ikincil yapı tahminidir. İkincil yapı tahmininde başarı oranının artırılması kullanılan sınıflama algoritması kadar, hesaplanan özniteliklere de bağlı olmaktadır. Öznitelik çıkarmak için sıkça kullanılan çoklu hizalama yöntemlerinde ise hesaplanan değerler, hizalama için kullanılan veri tabanına göre farklılık göstermektedir. Bu nedenle öznitelik matrisleri oluşturulurken uygun veri tabanın seçilmesi önem kazanmaktadır. Bu çalışmada CB513 veri seti kullanılarak iki farklı hizalama yöntemi ve üç farklı veri tabanı yardımı ile 5 farklı veri seti oluşturulmuş ve bu veri setleri iki aşamalı hibrit bir sınıflandırıcı kullanılarak karşılaştırılmıştır. Elde edilen sonuçlar doğrultusunda en iyi başarı oranı HHBlits hizalama yönteminin ilk aşamasında hesaplanacak PSSM değerleri için UniClust ve yapısal profil matrisleri için yine HHBlits’in ilk aşamasında NR veri tabanı kullanıldığında elde edilmiştir.
Three-dimensional structure prediction is one of the important problems in bioinformatics and theoretical chemistry. One of the most important steps in the threedimensional structure prediction is the estimation of secondary structure. Improving the accuracy rate in protein secondary structure prediction depends on computed attributes as well as the classification algorithms. In multiple alignment methods, which are often used to extract an attribute, the calculated values differ according to the database used for the alignment. For this reason, it is important to use a suitable database against which the target proteins are aligned to compute profile feature vectors. In this study, 5 different datasets are generated for the CB513 benchmark with the aid of two different alignment methods and three different databases. The profile features are fed as input to a two-stage hybrid classifier. According to the experimental results, the highest accuracy rate is obtained when UniClust database is used at the first stage of HHBlits alignment to calculate PSSM values and NR database is used at the first stage of HHBlits alignment to calculate structural profile matrices.

Description

Keywords

Secondary Structure Prediction, Protein Structure Prediction, Multi Alignment, Protein Database, İkincil Yapı Tahmini, Protein Yapı Tahmini, Çoklu Hizalama, Protein Veri Tabanı

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

1

End Page

4