Electricity Load Forecasting Using Deep Learning and Novel Hybrid Models

dc.contributor.author Sütçü, Muhammed
dc.contributor.author Şahin, Kübra Nur
dc.contributor.author Koloğlu, Yunus
dc.contributor.author Çelikel, Mevlüt Emirhan
dc.contributor.author Gülbahar, İbrahim Tümay
dc.contributor.authorID 0000-0002-8523-9103 en_US
dc.contributor.authorID 0000-0001-9786-6270 en_US
dc.contributor.authorID 0000-0001-6198-569X en_US
dc.contributor.authorID 0000-0001-9264-4345 en_US
dc.contributor.authorID 0000-0001-9192-0782 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Sütçü, Muhammed
dc.contributor.institutionauthor Şahin, Kübra Nur
dc.contributor.institutionauthor Koloğlu, Yunus
dc.contributor.institutionauthor Çelikel, Mevlüt Emirhan
dc.contributor.institutionauthor Gülbahar, İbrahim Tümay
dc.date.accessioned 2022-08-08T13:07:14Z
dc.date.available 2022-08-08T13:07:14Z
dc.date.issued 2022 en_US
dc.description.abstract Load forecasting is an essential task which is executed by electricity retail companies. By predicting the demand accurately, companies can prevent waste of resources and blackouts. Load forecasting directly affect the financial of the company and the stability of the Turkish Electricity Market. This study is conducted with an electricity retail company, and main focus of the study is to build accurate models for load. Datasets with novel features are preprocessed, then deep learning models are built in order to achieve high accuracy for these problems. Furthermore, a novel method for solving regression problems with classification approach (discretization) is developed for this study. In order to obtain more robust model, an ensemble model is developed and the success of individual models are evaluated in comparison to each other en_US
dc.identifier.endpage 104 en_US
dc.identifier.issn 2147-835X
dc.identifier.issue 1 en_US
dc.identifier.startpage 91 en_US
dc.identifier.uri https://doi.org/10.16984/saufenbilder.982639
dc.identifier.uri https://hdl.handle.net/20.500.12573/1350
dc.identifier.volume 26 en_US
dc.language.iso eng en_US
dc.publisher Sakarya University en_US
dc.relation.isversionof 10.16984/saufenbilder.982639 en_US
dc.relation.journal Sakarya University Journal of Science (SAUJS) en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Load forecasting en_US
dc.subject deep learning en_US
dc.subject regression by classification en_US
dc.title Electricity Load Forecasting Using Deep Learning and Novel Hybrid Models en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
document (5).pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: