Size, material type, and concentration estimation for micro-particles in liquid samples

dc.contributor.author Genc, Sinan
dc.contributor.author Erdem, Talha
dc.contributor.author İçöz, Kutay
dc.contributor.authorID 0000-0002-6909-723X en_US
dc.contributor.authorID 0000-0003-3905-376X en_US
dc.contributor.authorID 0000-0002-0947-6166 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Genc, Sinan
dc.contributor.institutionauthor Erdem, Talha
dc.contributor.institutionauthor İçöz, Kutay
dc.date.accessioned 2024-03-28T06:57:38Z
dc.date.available 2024-03-28T06:57:38Z
dc.date.issued 2024 en_US
dc.description.abstract The on-site examination and characterization of microparticles are becoming crucial due to the significant rise in plastic pollution in natural resources. Hence, identifying the specific microplastic composition and quantity would enable the implementation of preventive measures. This paper presents a cost-effective setup that utilizes the Random Forest algorithm to detect the size and refractive index of micro particles, hence facilitating the identification of the material type. The system utilizes the scattering patterns of laser light from the dispersion of microparticles, namely within the concentration range of 0.05 fM to 3.00 fM. The refractive indices and particle sizes of melamine (Me8) spheres with a size of 8 μm, as well as polystyrene (PS8) spheres with a size of 8 μm and (PS10) 10 μm, were estimated using the Random Forest algorithm and recorded scattering patterns. The proposed method may deliver findings with an average deviation of 0.23 μm for particle size and 0.015 for particle refractive index. The statistical analysis indicated that there was no notable disparity between the experimental findings and the predictions derived from the machine learning system. The existing configuration can be readily converted into a point-of-use system that can be employed on-site for the purpose of monitoring and identifying microplastic contamination. en_US
dc.identifier.endpage 8 en_US
dc.identifier.issn 0924-4247
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.sna.2024.115265
dc.identifier.uri https://hdl.handle.net/20.500.12573/2033
dc.identifier.volume 370 en_US
dc.language.iso eng en_US
dc.publisher ELSEVIER en_US
dc.relation.isversionof 10.1016/j.sna.2024.115265 en_US
dc.relation.journal Sensors and Actuators: A. Physical en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Optical Sensors en_US
dc.subject Micro plastic detection en_US
dc.subject Random forest en_US
dc.subject Mie scattering en_US
dc.title Size, material type, and concentration estimation for micro-particles in liquid samples en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0924424724002589-main.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: