Single-Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity

dc.contributor.author Foroutan-Barenji, Sina
dc.contributor.author Erdem, Onur
dc.contributor.author Delikanli, Savas
dc.contributor.author Yagci, Huseyin Bilge
dc.contributor.author Gheshlaghi, Negar
dc.contributor.author Altintas, Yemliha
dc.contributor.author Demir, Hilmi Volkan
dc.contributor.department AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Altintas, Yemliha
dc.date.accessioned 2022-03-01T08:01:14Z
dc.date.available 2022-03-01T08:01:14Z
dc.date.issued 2021 en_US
dc.description The authors acknowledge the financial support from the Singapore National Research Foundation under the program NRF-NRFI2016-08 and in part from TUBITAK 115E679. The authors thank Mustafa Guler for his assistance in TEM imaging of the as-synthesized CQWs and preparation of the TEM cross-sectional sample, and Dr. Gokce Celik for her help on the ellipsometric measurements. O.E. acknowledges TUBITAK for the financial support through BIDEB 2211 program. H.V.D. gratefully acknowledges support from TuBA. en_US
dc.description.abstract In this work, the first account of monolithically-fabricated vertical cavity surface emitting lasers (VCSELs) of densely-packed, orientation-controlled, atomically flat colloidal quantum wells (CQWs) using a self-assembly method and demonstrate single-mode lasing from a record thin colloidal gain medium with a film thickness of 7 nm under femtosecond optical excitation is reported. Specially engineered CQWs are used to demonstrate these hybrid CQW-VCSELs consisting of only a few layers to a single monolayer of CQWs and are achieved the lasing from these thin gain media by thoroughly modeling and implementing a vertical cavity consisting of distributed Bragg reflectors with an additional dielectric layer for mode tuning. Accurate spectral and spatial alignment of the cavity mode with the CQW films is secured with the help of full electromagnetic computations. While overcoming the long-pending problem of limited electrical conductivity in thicker colloidal films, such ultrathin colloidal gain media can be helpful to enable fully electrically-driven colloidal lasers. en_US
dc.description.sponsorship National Research Foundation, Singapore NRF-NRFI2016-08 Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 115E679 Turkish Academy of Sciences European Commission en_US
dc.identifier.issn 1863-8880
dc.identifier.issn 1863-8899
dc.identifier.uri https //doi.org/10.1002/lpor.202000479
dc.identifier.uri https://hdl.handle.net/20.500.12573/1204
dc.identifier.volume Volume 15 Issue 4 en_US
dc.language.iso eng en_US
dc.publisher WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY en_US
dc.relation.isversionof 10.1002/lpor.202000479 en_US
dc.relation.journal LASER & PHOTONICS REVIEWS en_US
dc.relation.publicationcategory Makale - Uluslararası - Editör Denetimli Dergi en_US
dc.relation.tubitak 115E679
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject colloidal quantum wells en_US
dc.subject liquid interface self‐ en_US
dc.subject assembly en_US
dc.subject monolithic microcavity en_US
dc.subject single‐ en_US
dc.subject mode lasing en_US
dc.subject vertical cavity surface‐ en_US
dc.subject emitting laser en_US
dc.title Single-Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Laser Photonics Reviews - 2021 - Foroutan‐Barenji - Single‐Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: