Staging of the liver fibrosis from CT images using texture features
Loading...
Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Even though liver biopsy is critical for evaluating chronic hepatitis and fibrosis, it is an invasive, costly, and difficult to standardize approach. The developments in medical image processing and artificial intelligence methods have advanced the potential of using computer-aided diagnosis techniques in the classification of liver tissues. The aim of this study was to develop a non-invasive, cost-effective, and fast approach to specify fibrosis stage using the texture properties of computed tomography images of liver. Gray level co-occurrence matrix, discrete wavelet transform, and discrete Fourier transform were the image analysis tools in the feature extraction phase. Following dimension reduction of the texture features support vector machines and k-nearest neighbor methods were used in the classification phase of this study. Our results showed that our approach is feasible in fibrosis staging especially in pairwise stage comparisons with success rate of approximately 90%.
Description
Keywords
Turkish CoHE Thesis Center URL
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
47
End Page
52