Channel-aware routing and priority-aware multi-channel scheduling for WSN-based smart grid applications

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD24-28 OVAL RD, LONDON NW1 7DX, ENGLAND

Abstract

Wireless Sensor Networks (WSNs) are one of the most promising solutions for smart grid applications due to advantages, such as their low-cost, different functionalities, and successful adoption to smart grid environments. However, providing quality of service (QoS) requirements of smart grid applications with WSNs is difficult because of the power constraints of sensor nodes and harsh smart grid channel conditions, such as RF interference, noise, multi-path fading and node contentions. To address these communication challenges, in this paper link-quality-aware routing algorithm (LQ-CMST) as well as the priority and channel-aware multi-channel (PCA-MC) scheduling algorithm have been proposed for smart grid applications. Furthermore, the effect of different modulation and encoding schemes on the performance of the proposed algorithms has been evaluated under harsh smart grid channel conditions. Comparative performance evaluations through extensive simulations show that the proposed algorithms significantly reduce communication delay and the choice of encoding and modulation schemes is critical to meet the requirements of envisioned smart grid applications. (C) 2016 Elsevier Ltd. All rights reserved.

Description

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH) King Abdulaziz City for Science and Technology - the Kingdom of Saudi Arabia award number (12-INF2731-03). The authors also, acknowledge with thanks Science and Technology Unit, King Abdulaziz University for technical support.

Keywords

Smart grid, Data prioritization, Multi-channel scheduling, Routing

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Volume 71 Page 50-58

Issue

Start Page

End Page