Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells

dc.contributor.author Yu, Junhong
dc.contributor.author Sharma, Manoj
dc.contributor.author Li, Mingjie
dc.contributor.author Liu, Baiquan
dc.contributor.author Hernandez-Martinez, Pedro Ludwig
dc.contributor.author Delikanli, Savas
dc.contributor.author Sharma, Ashma
dc.contributor.author Altintas, Yemliha
dc.contributor.author Hettiarachchi, Chathuranga
dc.contributor.author Sum, Tze Chien
dc.contributor.author Demir, Hilmi Volkan
dc.contributor.author Dang, Cuong
dc.contributor.department AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Altintas, Yemliha
dc.date.accessioned 2022-12-16T06:56:01Z
dc.date.available 2022-12-16T06:56:01Z
dc.date.issued 2022 en_US
dc.description.abstract Colloidal quantum wells (CQWs) provide an appealing platform to achieve emissive many-body correlations for novel optoelectronic devices, given that they act as hosts for strong carrier Coulomb interactions and present suppressed Auger recombination. However, the demonstrated high-order excitonic emission in CQWs requires ultrafast pumping with high excitation levels and can only be spec-trally resolved at the single-particle level under cryogenic condi-tions. Here, through systematic investigation using static power -dependent emission spectroscopy and transient carrier dynamics, we show that Cu-doped CdSe CQWs exhibit continuous-wave -pumped high-order excitonic emission at room temperature with a large binding energy of X64 meV. We attribute this unique behavior to dopant excitons in which the ultralong lifetime and the highly localized wavefunction facilitate the formation of many-body corre-lations. The spectrally resolved high-order excitonic emission gener-ated at power levels compatible with solar irradiation and electrical injection might pave the way for novel solution-processed solid-state devices. en_US
dc.description.sponsorship Ministry of Education, Singapore MOE-T2EP50121-0012, M21J9b0085 Agency for Science Technology & Research (A*STAR) MOE-RG62/20 TUBITAK 119N343, 20AG001, 121N395, 121C266 Turkish Academy of Sciences European Commission (TUBA) Australian Research Council Center of Excellence in Exciton Science CE170100026 en_US
dc.identifier.endpage 13 en_US
dc.identifier.issn 2666-3864
dc.identifier.issue 9 en_US
dc.identifier.other WOS:000862817300003
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.xcrp.2022.101049
dc.identifier.uri https://hdl.handle.net/20.500.12573/1424
dc.identifier.volume 3 en_US
dc.language.iso eng en_US
dc.publisher Elsevier en_US
dc.relation.isversionof 10.1016/j.xcrp.2022.101049 en_US
dc.relation.journal CELL REPORTS PHYSICAL SCIENCE en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.relation.tubitak 119N343
dc.relation.tubitak 121C266
dc.relation.tubitak 20AG001
dc.relation.tubitak 121N395
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject CDSE NANOPLATELETS en_US
dc.subject OPTICAL GAIN en_US
dc.subject AUGER RECOMBINATION en_US
dc.subject BIEXCITON en_US
dc.subject THRESHOLDDOTS en_US
dc.subject DOTS en_US
dc.title Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2666386422003435-main.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: