A New Semi-supervised Classification Method Based on Mixture Model Clustering for Classification of Multispectral Data

dc.contributor.author Gogebakan, Maruf
dc.contributor.author Erol, Hamza
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.date.accessioned 2021-04-28T07:40:54Z
dc.date.available 2021-04-28T07:40:54Z
dc.date.issued 2018 en_US
dc.description.abstract A new method for semi-supervised classification of remotely-sensed multispectral image data is developed in this study. It consists of unsupervised-clustering for data labelling and supervised-classification of clusters in multispectral image data (MID) using spectral signatures. Mixture model clustering, based on model selection, is proposed for finding the number and determining the structures of clusters in MID. The best mixture model, for the best clustering of data, finds the number and determines the structure of clusters in MID. The number of elements in the best mixture model fits to the number of clusters in MID. The elements of the best mixture model fits to the structure of clusters in MID. Clusters in MID is supervised-classified using spectral signatures. Euclidean distance is used as the discrimination function for the supervised-classification method. The values of Euclidean distances are used as decision rule for the supervised-classification method. en_US
dc.identifier.endpage 1331 en_US
dc.identifier.issn 0255-660X
dc.identifier.issn 0974-3006
dc.identifier.startpage 1323 en_US
dc.identifier.uri http //doi. org/ 10.1007/s12524-018-0808-9
dc.identifier.uri https://hdl.handle.net/20.500.12573/692
dc.identifier.volume Volume: 46 Issue: 8 Special Issue: SI en_US
dc.language.iso eng en_US
dc.publisher SPRINGER, 233 SPRING ST, NEW YORK, NY 10013 USA en_US
dc.relation.isversionof 10.1007/s12524-018-0808-9 en_US
dc.relation.journal JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING en_US
dc.relation.publicationcategory Makale - Uluslararası - Editör Denetimli Dergi en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Variable data segmentation en_US
dc.subject Unsupervised-clustering en_US
dc.subject Supervised-classification en_US
dc.subject Model selection; MID en_US
dc.subject Mixture model clustering en_US
dc.title A New Semi-supervised Classification Method Based on Mixture Model Clustering for Classification of Multispectral Data en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A New Semi-supervised Classification Method Based on Mixture Model Clustering for Classification of Multispectral Data.pdf
Size:
781.14 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: