An Approximate Spectral Clustering Ensemble for High Spatial Resolution Remote-Sensing Images

dc.contributor.author Tasdemir, Kadim
dc.contributor.author Yildirim, Isa
dc.contributor.author Moazzen, Yaser
dc.contributor.department AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Yildirim, Isa
dc.date.accessioned 2023-08-17T08:04:40Z
dc.date.available 2023-08-17T08:04:40Z
dc.date.issued 2015 en_US
dc.description.abstract Unsupervised clustering of high spatial resolution remote-sensing images plays a significant role in detailed landcover identification, especially for agricultural and environmental monitoring. A recently promising method is approximate spectral clustering (SC) which enables spectral partitioning for large datasets to extract clusters with distinct characteristics without a parametric model. It also facilitates the use of various information types via advanced similarity criteria. However, it requires an empirical selection of a similarity criterion optimal for the corresponding application. To address this challenge, we propose an approximate SC ensemble (ASCE2) which fuses partitionings obtained by different similarity representations. Contrary to existing spectral ensembles for remote-sensing applications, the proposed ASCE2 employs neural gas quantization instead of random sampling, advanced similarity criteria instead of traditional distance-based Gaussian kernel with different decay parameters, and a two-level ensemble. We evaluate the proposed ASCE2 with three measures (accuracy, adjusted Rand index, and normalized mutual information) using five remote-sensing images, two of which are commonly available. We apply the ASCE2 in two applications for agricultural monitoring: 1) land-cover identification to determine orchard fields using a WorldView-2 image (0.5-m spatial resolution) and 2) finding lands in good agricultural condition using multitemporal RapidEye images (5-m spatial resolution). Experimental results indicate a significant betterment of the resulting partitionings obtained by the proposed ensemble, with respect to the evaluation measures in these applications. en_US
dc.description.sponsorship Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 112E195 EU FP7 Marie Curie Career Integration IAM4MARS en_US
dc.identifier.endpage 2004 en_US
dc.identifier.issn 2151-1535
dc.identifier.issn 1939-1404
dc.identifier.issue 5 en_US
dc.identifier.other WOS:000358569400012
dc.identifier.startpage 1996 en_US
dc.identifier.uri https://doi.org/10.1109/JSTARS.2015.2424292
dc.identifier.uri https://hdl.handle.net/20.500.12573/1735
dc.identifier.volume 8 en_US
dc.language.iso eng en_US
dc.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en_US
dc.relation.ec IAM4MARS
dc.relation.isversionof 10.1109/JSTARS.2015.2424292 en_US
dc.relation.journal IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.relation.tubitak 112E195
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Approximate spectral clustering (SC) en_US
dc.subject cluster ensemble en_US
dc.subject clustering en_US
dc.subject geodesic similarity en_US
dc.subject land-cover identification en_US
dc.title An Approximate Spectral Clustering Ensemble for High Spatial Resolution Remote-Sensing Images en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
An_Approximate_Spectral_Clustering_Ensemble_for_High_Spatial_Resolution_Remote-Sensing_Images.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: