Transfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectors

dc.contributor.author Altindis, Fatih
dc.contributor.author Banerjee, Antara
dc.contributor.author Phlypo, Ronald
dc.contributor.author Yilmaz, Bulent
dc.contributor.author Congedo, Marco
dc.contributor.authorID 0000-0002-3891-935X en_US
dc.contributor.authorID 0000-0003-2954-1217 en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Altindis, Fatih
dc.contributor.institutionauthor Yilmaz, Bulent
dc.date.accessioned 2024-02-01T14:03:50Z
dc.date.available 2024-02-01T14:03:50Z
dc.date.issued 2023 en_US
dc.description.abstract This article presents a new transfer learning method named group learning, that jointly aligns multiple domains (many-to-many) and an extension named fast alignment that aligns any further domain to previously aligned group of domains (many-to-one). The proposed group alignment algorithm (GALIA) is evaluated on braincomputer interface (BCI) data and optimal hyper-parameter values of the algorithm are studied for classification performance and computational cost. Six publicly available P300 databases comprising 333 sessions from 177 subjects are used. As compared to the conventional subject-specific train/test pipeline, both group learning and fast alignment significantly improve the classification accuracy except for the database with clinical subjects (average improvement: 2.12±1.88%). GALIA utilizes cyclic approximate joint diagonalization (AJD) to find a set of linear transformations, one for each domain, jointly aligning the feature vectors of all domains. Group learning achieves a many-to-many transfer learning without compromising the classification performance on non-clinical BCI data. Fast alignment further extends the group learning for any unseen domains, allowing a many-to-one transfer learning with the same properties. The former method creates a single machine learning model using data from previous subjects and/or sessions, whereas the latter exploits the trained model for an unseen domain requiring no further training of the classifier. en_US
dc.description.sponsorship Agence Nationale de la Recherche (ANR) ANT-20-CE17-0023 en_US
dc.identifier.endpage 4706 en_US
dc.identifier.issn 2168-2194
dc.identifier.issn 2168-2208
dc.identifier.issue 10 en_US
dc.identifier.other WOS:001083127700007
dc.identifier.startpage 4696 en_US
dc.identifier.uri https://doi.org/10.1109/JBHI.2023.3299837
dc.identifier.uri https://hdl.handle.net/20.500.12573/1918
dc.identifier.volume 27 en_US
dc.language.iso eng en_US
dc.publisher IEEE en_US
dc.relation.isversionof 10.1109/JBHI.2023.3299837 en_US
dc.relation.journal IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.relation.tubitak 1059B142100364
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Brain-computer interface (BCI) en_US
dc.subject transfer learning en_US
dc.subject domain adaptation en_US
dc.subject riemannian geometry en_US
dc.subject electroencephalography (EEG) en_US
dc.title Transfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectors en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Transfer_Learning_for_P300_Brain-Computer_Interfaces_by_Joint_Alignment_of_Feature_Vectors.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: